Loading…
A Fine-Grain Variation-Aware Dynamic -Hopping AVFS Architecture on a 32 nm GALS MPSoC
In order to optimize global energy efficiency in the context of dynamic process, voltage and temperature variations in advanced nodes, a fine-grain adaptive voltage and frequency scaling architecture is proposed for multiprocessor systems-on-chip (MPSoC), where each processing element is an independ...
Saved in:
Published in: | IEEE journal of solid-state circuits 2014-07, Vol.49 (7), p.1475-1486 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to optimize global energy efficiency in the context of dynamic process, voltage and temperature variations in advanced nodes, a fine-grain adaptive voltage and frequency scaling architecture is proposed for multiprocessor systems-on-chip (MPSoC), where each processing element is an independent voltage-frequency island. This architecture has been implemented on a 32 nm globally asynchronous locally-synchronous MPSoC. It shows up to 18.2% energy gains thanks to local adaptability compared with a global dynamic voltage and frequency scaling approach using 25% timing margins between slow and nominal process, by reducing margins to 60 ps of the real process. These gains are obtained for a total area overhead of 10% including local frequency/voltage actuators, sensors, and digital controller. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2014.2317137 |