Loading…

A Novel 100 MHz-45 GHz Input-Termination-Less Distributed Amplifier Design With Low-Frequency Low-Noise and High Linearity Implemented With A 6 Inch 0.15~ \text GaN-SiC Wafer Process Technology

This paper describes a novel low-noise input-termination-less cascode distributed amplifier (DA) monolithic microwave integrated circuit (MMIC) design. The design was implemented with a 0.15 μm gate gallium nitride on silicon carbide GaN-SiC high electron mobility transistor (HEMT) 6 inch wafer proc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2016-09, Vol.51 (9), p.2017-2026
Main Authors: Kobayashi, Kevin W., Denninghoff, Dan, Miller, Dain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1106-b02d64ceaf8942e26500d6e76a3d650b738452ff61411479f66e26eb5222b6f43
cites cdi_FETCH-LOGICAL-c1106-b02d64ceaf8942e26500d6e76a3d650b738452ff61411479f66e26eb5222b6f43
container_end_page 2026
container_issue 9
container_start_page 2017
container_title IEEE journal of solid-state circuits
container_volume 51
creator Kobayashi, Kevin W.
Denninghoff, Dan
Miller, Dain
description This paper describes a novel low-noise input-termination-less cascode distributed amplifier (DA) monolithic microwave integrated circuit (MMIC) design. The design was implemented with a 0.15 μm gate gallium nitride on silicon carbide GaN-SiC high electron mobility transistor (HEMT) 6 inch wafer process technology. The GaN MMIC achieves a bandwidth from 100 MHz-45 GHz with greater than 10 dB gain and previously benchmarked the first published mm-wave MMIC results produced on a 6 inch GaN on SiC wafer process technology. The unique input-gate-termination-less DA topology reduces the low-frequency noise figure (NF) of the conventional resistive-terminated DA without compromising the third order intercept point (IP3) linearity. The new design achieves 1.6 dB NF at 250 MHz and a NF improvement of at least 1 dB and as much as 4 dB or greater for frequencies below 5 GHz compared to the conventional DA approach. The GaN MMIC also achieves an average mid-band NF of 2.5-3 dB, a saturated output power (Psat) of 1 Watt, and a mid-band output IP3 of 38 dBm. The new design architecture combined with the inherent device characteristics of GaN-SiC technology can provide performance benefits for next-generation coherent fiber optic, instrumentation and advanced broadband radio architecture applications.
doi_str_mv 10.1109/JSSC.2016.2558488
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2016_2558488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7480366</ieee_id><sourcerecordid>10_1109_JSSC_2016_2558488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1106-b02d64ceaf8942e26500d6e76a3d650b738452ff61411479f66e26eb5222b6f43</originalsourceid><addsrcrecordid>eNo9UV1v2jAUtaZWGqX7AdNe7h8wtR3HCY-IrkDFWCWo2MOkyEmuwRM4zA5b6cP-W__ZHFr16Z4rnXPuxyHkM2cDztnw5n65HA8E42og0jSXef6B9HhElGfJjwvSY4zndCgY-0iuQvgVWylz3iMvI1g0f3AHnDH4Nn2mMoXJ9Blm7nBs6Qr93jrd2sbROYYAtza03pbHFmsY7Q87ayx6uMVgNw7Wtt3CvPlL7zz-PqKrTudu0diAoF0NU7uJBOtQe9ueYBYNcI-uMztrR6Di4GoL8aj0H_xs8amFiV7QpR3DWps46sE3VbfICquta3bN5nRNLo3eBfz0Vvvk8e7rajyl8--T2Xg0p1V8kKIlE7WSFWqTD6VAoVLGaoWZ0kkdcZkluUyFMYpLzmU2NEpFEpapEKJURiZ9wl99K9-E4NEUB2_32p8Kzooug6LLoOgyKN4yiJovrxqLiO_8TOYsUSr5D-aLghA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel 100 MHz-45 GHz Input-Termination-Less Distributed Amplifier Design With Low-Frequency Low-Noise and High Linearity Implemented With A 6 Inch 0.15~ \text GaN-SiC Wafer Process Technology</title><source>IEEE Xplore (Online service)</source><creator>Kobayashi, Kevin W. ; Denninghoff, Dan ; Miller, Dain</creator><creatorcontrib>Kobayashi, Kevin W. ; Denninghoff, Dan ; Miller, Dain</creatorcontrib><description>This paper describes a novel low-noise input-termination-less cascode distributed amplifier (DA) monolithic microwave integrated circuit (MMIC) design. The design was implemented with a 0.15 μm gate gallium nitride on silicon carbide GaN-SiC high electron mobility transistor (HEMT) 6 inch wafer process technology. The GaN MMIC achieves a bandwidth from 100 MHz-45 GHz with greater than 10 dB gain and previously benchmarked the first published mm-wave MMIC results produced on a 6 inch GaN on SiC wafer process technology. The unique input-gate-termination-less DA topology reduces the low-frequency noise figure (NF) of the conventional resistive-terminated DA without compromising the third order intercept point (IP3) linearity. The new design achieves 1.6 dB NF at 250 MHz and a NF improvement of at least 1 dB and as much as 4 dB or greater for frequencies below 5 GHz compared to the conventional DA approach. The GaN MMIC also achieves an average mid-band NF of 2.5-3 dB, a saturated output power (Psat) of 1 Watt, and a mid-band output IP3 of 38 dBm. The new design architecture combined with the inherent device characteristics of GaN-SiC technology can provide performance benefits for next-generation coherent fiber optic, instrumentation and advanced broadband radio architecture applications.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2016.2558488</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>6 inch GaN-SiC ; Active load ; baseband ; distributed amplifier ; Gallium nitride ; Impedance ; Linearity ; Logic gates ; low noise ; mm-wave ; Noise measurement ; power ; Topology ; Transistors</subject><ispartof>IEEE journal of solid-state circuits, 2016-09, Vol.51 (9), p.2017-2026</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1106-b02d64ceaf8942e26500d6e76a3d650b738452ff61411479f66e26eb5222b6f43</citedby><cites>FETCH-LOGICAL-c1106-b02d64ceaf8942e26500d6e76a3d650b738452ff61411479f66e26eb5222b6f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7480366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Kobayashi, Kevin W.</creatorcontrib><creatorcontrib>Denninghoff, Dan</creatorcontrib><creatorcontrib>Miller, Dain</creatorcontrib><title>A Novel 100 MHz-45 GHz Input-Termination-Less Distributed Amplifier Design With Low-Frequency Low-Noise and High Linearity Implemented With A 6 Inch 0.15~ \text GaN-SiC Wafer Process Technology</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper describes a novel low-noise input-termination-less cascode distributed amplifier (DA) monolithic microwave integrated circuit (MMIC) design. The design was implemented with a 0.15 μm gate gallium nitride on silicon carbide GaN-SiC high electron mobility transistor (HEMT) 6 inch wafer process technology. The GaN MMIC achieves a bandwidth from 100 MHz-45 GHz with greater than 10 dB gain and previously benchmarked the first published mm-wave MMIC results produced on a 6 inch GaN on SiC wafer process technology. The unique input-gate-termination-less DA topology reduces the low-frequency noise figure (NF) of the conventional resistive-terminated DA without compromising the third order intercept point (IP3) linearity. The new design achieves 1.6 dB NF at 250 MHz and a NF improvement of at least 1 dB and as much as 4 dB or greater for frequencies below 5 GHz compared to the conventional DA approach. The GaN MMIC also achieves an average mid-band NF of 2.5-3 dB, a saturated output power (Psat) of 1 Watt, and a mid-band output IP3 of 38 dBm. The new design architecture combined with the inherent device characteristics of GaN-SiC technology can provide performance benefits for next-generation coherent fiber optic, instrumentation and advanced broadband radio architecture applications.</description><subject>6 inch GaN-SiC</subject><subject>Active load</subject><subject>baseband</subject><subject>distributed amplifier</subject><subject>Gallium nitride</subject><subject>Impedance</subject><subject>Linearity</subject><subject>Logic gates</subject><subject>low noise</subject><subject>mm-wave</subject><subject>Noise measurement</subject><subject>power</subject><subject>Topology</subject><subject>Transistors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9UV1v2jAUtaZWGqX7AdNe7h8wtR3HCY-IrkDFWCWo2MOkyEmuwRM4zA5b6cP-W__ZHFr16Z4rnXPuxyHkM2cDztnw5n65HA8E42og0jSXef6B9HhElGfJjwvSY4zndCgY-0iuQvgVWylz3iMvI1g0f3AHnDH4Nn2mMoXJ9Blm7nBs6Qr93jrd2sbROYYAtza03pbHFmsY7Q87ayx6uMVgNw7Wtt3CvPlL7zz-PqKrTudu0diAoF0NU7uJBOtQe9ueYBYNcI-uMztrR6Di4GoL8aj0H_xs8amFiV7QpR3DWps46sE3VbfICquta3bN5nRNLo3eBfz0Vvvk8e7rajyl8--T2Xg0p1V8kKIlE7WSFWqTD6VAoVLGaoWZ0kkdcZkluUyFMYpLzmU2NEpFEpapEKJURiZ9wl99K9-E4NEUB2_32p8Kzooug6LLoOgyKN4yiJovrxqLiO_8TOYsUSr5D-aLghA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Kobayashi, Kevin W.</creator><creator>Denninghoff, Dan</creator><creator>Miller, Dain</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201609</creationdate><title>A Novel 100 MHz-45 GHz Input-Termination-Less Distributed Amplifier Design With Low-Frequency Low-Noise and High Linearity Implemented With A 6 Inch 0.15~ \text GaN-SiC Wafer Process Technology</title><author>Kobayashi, Kevin W. ; Denninghoff, Dan ; Miller, Dain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1106-b02d64ceaf8942e26500d6e76a3d650b738452ff61411479f66e26eb5222b6f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>6 inch GaN-SiC</topic><topic>Active load</topic><topic>baseband</topic><topic>distributed amplifier</topic><topic>Gallium nitride</topic><topic>Impedance</topic><topic>Linearity</topic><topic>Logic gates</topic><topic>low noise</topic><topic>mm-wave</topic><topic>Noise measurement</topic><topic>power</topic><topic>Topology</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Kevin W.</creatorcontrib><creatorcontrib>Denninghoff, Dan</creatorcontrib><creatorcontrib>Miller, Dain</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Kevin W.</au><au>Denninghoff, Dan</au><au>Miller, Dain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel 100 MHz-45 GHz Input-Termination-Less Distributed Amplifier Design With Low-Frequency Low-Noise and High Linearity Implemented With A 6 Inch 0.15~ \text GaN-SiC Wafer Process Technology</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2016-09</date><risdate>2016</risdate><volume>51</volume><issue>9</issue><spage>2017</spage><epage>2026</epage><pages>2017-2026</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper describes a novel low-noise input-termination-less cascode distributed amplifier (DA) monolithic microwave integrated circuit (MMIC) design. The design was implemented with a 0.15 μm gate gallium nitride on silicon carbide GaN-SiC high electron mobility transistor (HEMT) 6 inch wafer process technology. The GaN MMIC achieves a bandwidth from 100 MHz-45 GHz with greater than 10 dB gain and previously benchmarked the first published mm-wave MMIC results produced on a 6 inch GaN on SiC wafer process technology. The unique input-gate-termination-less DA topology reduces the low-frequency noise figure (NF) of the conventional resistive-terminated DA without compromising the third order intercept point (IP3) linearity. The new design achieves 1.6 dB NF at 250 MHz and a NF improvement of at least 1 dB and as much as 4 dB or greater for frequencies below 5 GHz compared to the conventional DA approach. The GaN MMIC also achieves an average mid-band NF of 2.5-3 dB, a saturated output power (Psat) of 1 Watt, and a mid-band output IP3 of 38 dBm. The new design architecture combined with the inherent device characteristics of GaN-SiC technology can provide performance benefits for next-generation coherent fiber optic, instrumentation and advanced broadband radio architecture applications.</abstract><pub>IEEE</pub><doi>10.1109/JSSC.2016.2558488</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2016-09, Vol.51 (9), p.2017-2026
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2016_2558488
source IEEE Xplore (Online service)
subjects 6 inch GaN-SiC
Active load
baseband
distributed amplifier
Gallium nitride
Impedance
Linearity
Logic gates
low noise
mm-wave
Noise measurement
power
Topology
Transistors
title A Novel 100 MHz-45 GHz Input-Termination-Less Distributed Amplifier Design With Low-Frequency Low-Noise and High Linearity Implemented With A 6 Inch 0.15~ \text GaN-SiC Wafer Process Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20100%20MHz-45%20GHz%20Input-Termination-Less%20Distributed%20Amplifier%20Design%20With%20Low-Frequency%20Low-Noise%20and%20High%20Linearity%20Implemented%20With%20A%206%20Inch%200.15~%20%5Ctext%20GaN-SiC%20Wafer%20Process%20Technology&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Kobayashi,%20Kevin%20W.&rft.date=2016-09&rft.volume=51&rft.issue=9&rft.spage=2017&rft.epage=2026&rft.pages=2017-2026&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2016.2558488&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSSC_2016_2558488%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1106-b02d64ceaf8942e26500d6e76a3d650b738452ff61411479f66e26eb5222b6f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7480366&rfr_iscdi=true