Loading…
A Twin-8T SRAM Computation-in-Memory Unit-Macro for Multibit CNN-Based AI Edge Processors
Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for w...
Saved in:
Published in: | IEEE journal of solid-state circuits 2020-01, Vol.55 (1), p.189-202 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work presents an static random access memory (SRAM) CIM unit-macro using: 1) compact-rule compatible twin-8T (T8T) cells for weighted CIM MAC operations to reduce area overhead and vulnerability to process variation; 2) an even-odd dual-channel (EODC) input mapping scheme to extend input bandwidth; 3) a two's complement weight mapping (C2WM) scheme to enable MAC operations using positive and negative weights within a cell array in order to reduce area overhead and computational latency; and 4) a configurable global-local reference voltage generation (CGLRVG) scheme for kernels of various sizes and bit precision. A 64 Ă— 60 b T8T unit-macro with 1-, 2-, 4-b inputs, 1-, 2-, 5-b weights, and up to 7-b MAC-value (MACV) outputs was fabricated as a test chip using a foundry 55-nm process. The proposed SRAM-CIM unit-macro achieved access times of 5 ns and energy efficiency of 37.5-45.36 TOPS/W under 5-b MACV output. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2019.2952773 |