Loading…

ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture

The inversion of remote sensing images is crucial for soil moisture mapping in precision agriculture. However, the large size of remote sensing images complicates their management. Therefore, this study proposes a remote sensing observation sharing method based on cloud computing (ROSCC) to enhance...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2016-12, Vol.9 (12), p.5588-5598
Main Authors: Zhou, Lianjie, Chen, Nengcheng, Chen, Zeqiang, Xing, Chenjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-47299483fd50a1d9589379b6ee00cf0197b8d5985fc82c85c33cd609b3cc47e3
cites cdi_FETCH-LOGICAL-c297t-47299483fd50a1d9589379b6ee00cf0197b8d5985fc82c85c33cd609b3cc47e3
container_end_page 5598
container_issue 12
container_start_page 5588
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 9
creator Zhou, Lianjie
Chen, Nengcheng
Chen, Zeqiang
Xing, Chenjie
description The inversion of remote sensing images is crucial for soil moisture mapping in precision agriculture. However, the large size of remote sensing images complicates their management. Therefore, this study proposes a remote sensing observation sharing method based on cloud computing (ROSCC) to enhance remote sensing observation storage, processing, and service capability. The ROSCC framework consists of a cloud computing-enabled sensor observation service, web processing service tier, and a distributed database tier. Using MongoDB as the distributed database and Apache Hadoop as the cloud computing service, this study achieves a high-throughput method for remote sensing observation storage and distribution. The map, reduced algorithms and the table structure design in distributed databases are then explained. Along the Yangtze River, the longest river in China, Hubei Province was selected as the study area to test the proposed framework. Using GF-1 as a data source, an experiment was performed to enhance earth observation data (EOD) storage and achieve large-scale soil moisture mapping. The proposed ROSCC can be applied to enhance EOD sharing in cloud computing context, so as to achieve soil moisture mapping via the modified perpendicular drought index in an efficient way to better serve precision agriculture.
doi_str_mv 10.1109/JSTARS.2016.2574810
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2016_2574810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7500091</ieee_id><sourcerecordid>1847613367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-47299483fd50a1d9589379b6ee00cf0197b8d5985fc82c85c33cd609b3cc47e3</originalsourceid><addsrcrecordid>eNo9kN1qgzAUx8PYYF23J-hNYNd2iTHG7M7JPmnpqL0Xjcc2xRqX6GCPsLeeYtnVgf_XgR9CC0qWlBL58JHu4m269AkNlz4XQUTJBZr5lFOPcsYv0YxKJj0akOAa3Th3JCT0hWQz9LvdpEnyiOMGP1eVVhqaDm_hZDrAKTRON3u8KRzY77zTpvHSQ25HbQ3dwZT4KXdQYtPgpDZ9iRNzavtu9CtjcWp0jddGu663gNd5246ObvCnBaXdMIfjvdWqr8fALbqq8trB3fnO0e7leZe8eavN63sSrzzlS9F5gfClDCJWlZzktJQ8kkzIIgQgRFWESlFEJZcRr1Tkq4grxlQZElkwpQIBbI7up9nWmq8eXJcdTW-b4WNGo0CElLFQDCk2pZQ1zlmostbqU25_MkqyEXk2Ic9G5NkZ-dBaTC0NAP8NwQkhkrI_MPd-IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847613367</pqid></control><display><type>article</type><title>ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture</title><source>Alma/SFX Local Collection</source><creator>Zhou, Lianjie ; Chen, Nengcheng ; Chen, Zeqiang ; Xing, Chenjie</creator><creatorcontrib>Zhou, Lianjie ; Chen, Nengcheng ; Chen, Zeqiang ; Xing, Chenjie</creatorcontrib><description>The inversion of remote sensing images is crucial for soil moisture mapping in precision agriculture. However, the large size of remote sensing images complicates their management. Therefore, this study proposes a remote sensing observation sharing method based on cloud computing (ROSCC) to enhance remote sensing observation storage, processing, and service capability. The ROSCC framework consists of a cloud computing-enabled sensor observation service, web processing service tier, and a distributed database tier. Using MongoDB as the distributed database and Apache Hadoop as the cloud computing service, this study achieves a high-throughput method for remote sensing observation storage and distribution. The map, reduced algorithms and the table structure design in distributed databases are then explained. Along the Yangtze River, the longest river in China, Hubei Province was selected as the study area to test the proposed framework. Using GF-1 as a data source, an experiment was performed to enhance earth observation data (EOD) storage and achieve large-scale soil moisture mapping. The proposed ROSCC can be applied to enhance EOD sharing in cloud computing context, so as to achieve soil moisture mapping via the modified perpendicular drought index in an efficient way to better serve precision agriculture.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2016.2574810</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; Algorithms ; Cloud computing ; Distributed databases ; Drought ; Drought index ; Earth ; earth observation data (EOD) sharing enhancement ; Imagery ; Mapping ; Moisture effects ; Plant cover ; precision agriculture (PA) ; Precision farming ; Remote observing ; Remote sensing ; Rivers ; sensor observation service (SOS) ; Servers ; Soil moisture</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2016-12, Vol.9 (12), p.5588-5598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-47299483fd50a1d9589379b6ee00cf0197b8d5985fc82c85c33cd609b3cc47e3</citedby><cites>FETCH-LOGICAL-c297t-47299483fd50a1d9589379b6ee00cf0197b8d5985fc82c85c33cd609b3cc47e3</cites><orcidid>0000-0002-3521-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhou, Lianjie</creatorcontrib><creatorcontrib>Chen, Nengcheng</creatorcontrib><creatorcontrib>Chen, Zeqiang</creatorcontrib><creatorcontrib>Xing, Chenjie</creatorcontrib><title>ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The inversion of remote sensing images is crucial for soil moisture mapping in precision agriculture. However, the large size of remote sensing images complicates their management. Therefore, this study proposes a remote sensing observation sharing method based on cloud computing (ROSCC) to enhance remote sensing observation storage, processing, and service capability. The ROSCC framework consists of a cloud computing-enabled sensor observation service, web processing service tier, and a distributed database tier. Using MongoDB as the distributed database and Apache Hadoop as the cloud computing service, this study achieves a high-throughput method for remote sensing observation storage and distribution. The map, reduced algorithms and the table structure design in distributed databases are then explained. Along the Yangtze River, the longest river in China, Hubei Province was selected as the study area to test the proposed framework. Using GF-1 as a data source, an experiment was performed to enhance earth observation data (EOD) storage and achieve large-scale soil moisture mapping. The proposed ROSCC can be applied to enhance EOD sharing in cloud computing context, so as to achieve soil moisture mapping via the modified perpendicular drought index in an efficient way to better serve precision agriculture.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Distributed databases</subject><subject>Drought</subject><subject>Drought index</subject><subject>Earth</subject><subject>earth observation data (EOD) sharing enhancement</subject><subject>Imagery</subject><subject>Mapping</subject><subject>Moisture effects</subject><subject>Plant cover</subject><subject>precision agriculture (PA)</subject><subject>Precision farming</subject><subject>Remote observing</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>sensor observation service (SOS)</subject><subject>Servers</subject><subject>Soil moisture</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kN1qgzAUx8PYYF23J-hNYNd2iTHG7M7JPmnpqL0Xjcc2xRqX6GCPsLeeYtnVgf_XgR9CC0qWlBL58JHu4m269AkNlz4XQUTJBZr5lFOPcsYv0YxKJj0akOAa3Th3JCT0hWQz9LvdpEnyiOMGP1eVVhqaDm_hZDrAKTRON3u8KRzY77zTpvHSQ25HbQ3dwZT4KXdQYtPgpDZ9iRNzavtu9CtjcWp0jddGu663gNd5246ObvCnBaXdMIfjvdWqr8fALbqq8trB3fnO0e7leZe8eavN63sSrzzlS9F5gfClDCJWlZzktJQ8kkzIIgQgRFWESlFEJZcRr1Tkq4grxlQZElkwpQIBbI7up9nWmq8eXJcdTW-b4WNGo0CElLFQDCk2pZQ1zlmostbqU25_MkqyEXk2Ic9G5NkZ-dBaTC0NAP8NwQkhkrI_MPd-IQ</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Zhou, Lianjie</creator><creator>Chen, Nengcheng</creator><creator>Chen, Zeqiang</creator><creator>Xing, Chenjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3521-9972</orcidid></search><sort><creationdate>201612</creationdate><title>ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture</title><author>Zhou, Lianjie ; Chen, Nengcheng ; Chen, Zeqiang ; Xing, Chenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-47299483fd50a1d9589379b6ee00cf0197b8d5985fc82c85c33cd609b3cc47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Distributed databases</topic><topic>Drought</topic><topic>Drought index</topic><topic>Earth</topic><topic>earth observation data (EOD) sharing enhancement</topic><topic>Imagery</topic><topic>Mapping</topic><topic>Moisture effects</topic><topic>Plant cover</topic><topic>precision agriculture (PA)</topic><topic>Precision farming</topic><topic>Remote observing</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>sensor observation service (SOS)</topic><topic>Servers</topic><topic>Soil moisture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Lianjie</creatorcontrib><creatorcontrib>Chen, Nengcheng</creatorcontrib><creatorcontrib>Chen, Zeqiang</creatorcontrib><creatorcontrib>Xing, Chenjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Lianjie</au><au>Chen, Nengcheng</au><au>Chen, Zeqiang</au><au>Xing, Chenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2016-12</date><risdate>2016</risdate><volume>9</volume><issue>12</issue><spage>5588</spage><epage>5598</epage><pages>5588-5598</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>The inversion of remote sensing images is crucial for soil moisture mapping in precision agriculture. However, the large size of remote sensing images complicates their management. Therefore, this study proposes a remote sensing observation sharing method based on cloud computing (ROSCC) to enhance remote sensing observation storage, processing, and service capability. The ROSCC framework consists of a cloud computing-enabled sensor observation service, web processing service tier, and a distributed database tier. Using MongoDB as the distributed database and Apache Hadoop as the cloud computing service, this study achieves a high-throughput method for remote sensing observation storage and distribution. The map, reduced algorithms and the table structure design in distributed databases are then explained. Along the Yangtze River, the longest river in China, Hubei Province was selected as the study area to test the proposed framework. Using GF-1 as a data source, an experiment was performed to enhance earth observation data (EOD) storage and achieve large-scale soil moisture mapping. The proposed ROSCC can be applied to enhance EOD sharing in cloud computing context, so as to achieve soil moisture mapping via the modified perpendicular drought index in an efficient way to better serve precision agriculture.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2016.2574810</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3521-9972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2016-12, Vol.9 (12), p.5588-5598
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2016_2574810
source Alma/SFX Local Collection
subjects Agriculture
Algorithms
Cloud computing
Distributed databases
Drought
Drought index
Earth
earth observation data (EOD) sharing enhancement
Imagery
Mapping
Moisture effects
Plant cover
precision agriculture (PA)
Precision farming
Remote observing
Remote sensing
Rivers
sensor observation service (SOS)
Servers
Soil moisture
title ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ROSCC:%20An%20Efficient%20Remote%20Sensing%20Observation-Sharing%20Method%20Based%20on%20Cloud%20Computing%20for%20Soil%20Moisture%20Mapping%20in%20Precision%20Agriculture&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Zhou,%20Lianjie&rft.date=2016-12&rft.volume=9&rft.issue=12&rft.spage=5588&rft.epage=5598&rft.pages=5588-5598&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2016.2574810&rft_dat=%3Cproquest_cross%3E1847613367%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-47299483fd50a1d9589379b6ee00cf0197b8d5985fc82c85c33cd609b3cc47e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1847613367&rft_id=info:pmid/&rft_ieee_id=7500091&rfr_iscdi=true