Loading…
Slow Light in Square-Lattice Chalcogenide Photonic Crystal Holey Fibers
Slow light in square-lattice chalcogenide photonic-crystal (PC) holey fibers with uniform longitude geometry are proposed and theoretically investigated. By using the planewave-expansion method, a largest normalized complete 2-D photonic bandgap (CPBG) width of about 7.4% is found in an optimized co...
Saved in:
Published in: | IEEE journal of selected topics in quantum electronics 2016-03, Vol.22 (2), p.271-278 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Slow light in square-lattice chalcogenide photonic-crystal (PC) holey fibers with uniform longitude geometry are proposed and theoretically investigated. By using the planewave-expansion method, a largest normalized complete 2-D photonic bandgap (CPBG) width of about 7.4% is found in an optimized connected-rod square-lattice chalcogenide PC, and the CPBG remains open with a refractive-index contrast as low as 2.48:1. We then consider the PCs as cladding layers to form holey fibers, and group indices up to several hundreds are predicted. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2015.2422997 |