Loading…

Query Adaptive Fusion for Graph-Based Visual Reranking

Developing effective fusion schemes for multiple feature types has always been a hot issue in content-based image retrieval. In this paper, we propose a novel method for graph-based visual reranking, which addresses two major limitations in existing methods. First, in the phase of graph construction...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in signal processing 2017-09, Vol.11 (6), p.908-917
Main Authors: Fang, Muyuan, Zhang, Yu-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-b22ba3efbe05ad6117066075ff2fe31c311ecff708f8a121119ca6e7bc532ea83
cites cdi_FETCH-LOGICAL-c267t-b22ba3efbe05ad6117066075ff2fe31c311ecff708f8a121119ca6e7bc532ea83
container_end_page 917
container_issue 6
container_start_page 908
container_title IEEE journal of selected topics in signal processing
container_volume 11
creator Fang, Muyuan
Zhang, Yu-Jin
description Developing effective fusion schemes for multiple feature types has always been a hot issue in content-based image retrieval. In this paper, we propose a novel method for graph-based visual reranking, which addresses two major limitations in existing methods. First, in the phase of graph construction, our method introduces fine-grained measurements for image relations, by assigning the edge weights using normalized similarity. Furthermore, in the phase of graph fusion, rather than summing up all the graphs for different single features indiscriminately, we propose to estimate the reliability of each feature through a statistical model, and selectively fuse the single graphs via query-adaptive fusion weights. Fusion methods with either labeled data and unlabeled data are proposed and the performance are evaluated and compared by experiments. Our method is evaluated on five public datasets, by fusing scale-invariant feature transform (SIFT), CNN, and hue, saturation, hue (HSV), three complementary features. Experimental results demonstrate the effectiveness of the proposed method, which yields superior results than the competing methods.
doi_str_mv 10.1109/JSTSP.2017.2726977
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTSP_2017_2726977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7979512</ieee_id><sourcerecordid>10_1109_JSTSP_2017_2726977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-b22ba3efbe05ad6117066075ff2fe31c311ecff708f8a121119ca6e7bc532ea83</originalsourceid><addsrcrecordid>eNo9z01OwzAQhmELgUQpXAA2vkCCx47tZFkq2oIq8dPCNnKcMRhKEtkNUm8PoRWrmc37SQ8hl8BSAFZc36_Wq8eUM9Ap11wVWh-RERQZJCzLs-PhFzzJpBSn5CzGD8akVpCNiHrqMezopDbd1n8jnfXRtw11baDzYLr35MZErOmrj73Z0GcMpvn0zds5OXFmE_HicMfkZXa7ni6S5cP8bjpZJpYrvU0qzisj0FXIpKkVgGZKMS2d4w4FWAGA1jnNcpcb4ABQWKNQV1YKjiYXY8L3uza0MQZ0ZRf8lwm7Elg5yMs_eTnIy4P8N7raRx4R_wNd6EICFz8B81T3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Query Adaptive Fusion for Graph-Based Visual Reranking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fang, Muyuan ; Zhang, Yu-Jin</creator><creatorcontrib>Fang, Muyuan ; Zhang, Yu-Jin</creatorcontrib><description>Developing effective fusion schemes for multiple feature types has always been a hot issue in content-based image retrieval. In this paper, we propose a novel method for graph-based visual reranking, which addresses two major limitations in existing methods. First, in the phase of graph construction, our method introduces fine-grained measurements for image relations, by assigning the edge weights using normalized similarity. Furthermore, in the phase of graph fusion, rather than summing up all the graphs for different single features indiscriminately, we propose to estimate the reliability of each feature through a statistical model, and selectively fuse the single graphs via query-adaptive fusion weights. Fusion methods with either labeled data and unlabeled data are proposed and the performance are evaluated and compared by experiments. Our method is evaluated on five public datasets, by fusing scale-invariant feature transform (SIFT), CNN, and hue, saturation, hue (HSV), three complementary features. Experimental results demonstrate the effectiveness of the proposed method, which yields superior results than the competing methods.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2017.2726977</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electronic mail ; Feature fusion ; Fuses ; Image edge detection ; image graph ; Image retrieval ; image search ; Reliability ; reranking ; similarity score ; Visualization ; Weight measurement</subject><ispartof>IEEE journal of selected topics in signal processing, 2017-09, Vol.11 (6), p.908-917</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-b22ba3efbe05ad6117066075ff2fe31c311ecff708f8a121119ca6e7bc532ea83</citedby><cites>FETCH-LOGICAL-c267t-b22ba3efbe05ad6117066075ff2fe31c311ecff708f8a121119ca6e7bc532ea83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7979512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Fang, Muyuan</creatorcontrib><creatorcontrib>Zhang, Yu-Jin</creatorcontrib><title>Query Adaptive Fusion for Graph-Based Visual Reranking</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Developing effective fusion schemes for multiple feature types has always been a hot issue in content-based image retrieval. In this paper, we propose a novel method for graph-based visual reranking, which addresses two major limitations in existing methods. First, in the phase of graph construction, our method introduces fine-grained measurements for image relations, by assigning the edge weights using normalized similarity. Furthermore, in the phase of graph fusion, rather than summing up all the graphs for different single features indiscriminately, we propose to estimate the reliability of each feature through a statistical model, and selectively fuse the single graphs via query-adaptive fusion weights. Fusion methods with either labeled data and unlabeled data are proposed and the performance are evaluated and compared by experiments. Our method is evaluated on five public datasets, by fusing scale-invariant feature transform (SIFT), CNN, and hue, saturation, hue (HSV), three complementary features. Experimental results demonstrate the effectiveness of the proposed method, which yields superior results than the competing methods.</description><subject>Electronic mail</subject><subject>Feature fusion</subject><subject>Fuses</subject><subject>Image edge detection</subject><subject>image graph</subject><subject>Image retrieval</subject><subject>image search</subject><subject>Reliability</subject><subject>reranking</subject><subject>similarity score</subject><subject>Visualization</subject><subject>Weight measurement</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9z01OwzAQhmELgUQpXAA2vkCCx47tZFkq2oIq8dPCNnKcMRhKEtkNUm8PoRWrmc37SQ8hl8BSAFZc36_Wq8eUM9Ap11wVWh-RERQZJCzLs-PhFzzJpBSn5CzGD8akVpCNiHrqMezopDbd1n8jnfXRtw11baDzYLr35MZErOmrj73Z0GcMpvn0zds5OXFmE_HicMfkZXa7ni6S5cP8bjpZJpYrvU0qzisj0FXIpKkVgGZKMS2d4w4FWAGA1jnNcpcb4ABQWKNQV1YKjiYXY8L3uza0MQZ0ZRf8lwm7Elg5yMs_eTnIy4P8N7raRx4R_wNd6EICFz8B81T3</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Fang, Muyuan</creator><creator>Zhang, Yu-Jin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201709</creationdate><title>Query Adaptive Fusion for Graph-Based Visual Reranking</title><author>Fang, Muyuan ; Zhang, Yu-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-b22ba3efbe05ad6117066075ff2fe31c311ecff708f8a121119ca6e7bc532ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electronic mail</topic><topic>Feature fusion</topic><topic>Fuses</topic><topic>Image edge detection</topic><topic>image graph</topic><topic>Image retrieval</topic><topic>image search</topic><topic>Reliability</topic><topic>reranking</topic><topic>similarity score</topic><topic>Visualization</topic><topic>Weight measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Muyuan</creatorcontrib><creatorcontrib>Zhang, Yu-Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Muyuan</au><au>Zhang, Yu-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Query Adaptive Fusion for Graph-Based Visual Reranking</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2017-09</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>908</spage><epage>917</epage><pages>908-917</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Developing effective fusion schemes for multiple feature types has always been a hot issue in content-based image retrieval. In this paper, we propose a novel method for graph-based visual reranking, which addresses two major limitations in existing methods. First, in the phase of graph construction, our method introduces fine-grained measurements for image relations, by assigning the edge weights using normalized similarity. Furthermore, in the phase of graph fusion, rather than summing up all the graphs for different single features indiscriminately, we propose to estimate the reliability of each feature through a statistical model, and selectively fuse the single graphs via query-adaptive fusion weights. Fusion methods with either labeled data and unlabeled data are proposed and the performance are evaluated and compared by experiments. Our method is evaluated on five public datasets, by fusing scale-invariant feature transform (SIFT), CNN, and hue, saturation, hue (HSV), three complementary features. Experimental results demonstrate the effectiveness of the proposed method, which yields superior results than the competing methods.</abstract><pub>IEEE</pub><doi>10.1109/JSTSP.2017.2726977</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2017-09, Vol.11 (6), p.908-917
issn 1932-4553
1941-0484
language eng
recordid cdi_crossref_primary_10_1109_JSTSP_2017_2726977
source IEEE Electronic Library (IEL) Journals
subjects Electronic mail
Feature fusion
Fuses
Image edge detection
image graph
Image retrieval
image search
Reliability
reranking
similarity score
Visualization
Weight measurement
title Query Adaptive Fusion for Graph-Based Visual Reranking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Query%20Adaptive%20Fusion%20for%20Graph-Based%20Visual%20Reranking&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Fang,%20Muyuan&rft.date=2017-09&rft.volume=11&rft.issue=6&rft.spage=908&rft.epage=917&rft.pages=908-917&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2017.2726977&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSTSP_2017_2726977%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-b22ba3efbe05ad6117066075ff2fe31c311ecff708f8a121119ca6e7bc532ea83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7979512&rfr_iscdi=true