Loading…

SPAM: A Secure Password Authentication Mechanism for Seamless Handover in Proxy Mobile IPv6 Networks

The Internet Engineering Task Force NETLMM Working Group recently proposed a network-based localized mobility management protocol called Proxy Mobile IPv6 (PMIPv6) to support mobility management without the participation of mobile nodes in any mobility-related signaling. Although PMIPv6 reduces the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE systems journal 2013-03, Vol.7 (1), p.102-113
Main Authors: Chuang, Ming-Chin, Lee, Jeng-Farn, Chen, Meng-Chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Internet Engineering Task Force NETLMM Working Group recently proposed a network-based localized mobility management protocol called Proxy Mobile IPv6 (PMIPv6) to support mobility management without the participation of mobile nodes in any mobility-related signaling. Although PMIPv6 reduces the signaling overhead and the handover latency, it still suffers from packet loss problem and long authentication latency during handoff. In addition, there are many security threats to PMIPv6. In this paper, we perform a bicasting scheme for avoiding the packet loss problem, use the piggyback technique to reduce the signaling overhead, and provide a secure password authentication mechanism (SPAM) for protecting a valid user from attacks in PMIPv6 networks. SPAM provides high security properties, including anonymity, stolen-verified attack resistance, location privacy, mutual authentication, forgery attack resistance, no clock synchronization problem, modification attack resistance, replay attack resistance, fast error detection, choose and change password free, and session key agreement. Moreover, SPAM is an efficient authentication scheme that performs the authentication procedure locally and has low computational cost. From the analysis, we demonstrate that our scheme can resist various attacks and provides better performance than existing schemes.
ISSN:1932-8184
1937-9234
DOI:10.1109/JSYST.2012.2209276