Loading…
D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna
This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due t...
Saved in:
Published in: | IEEE antennas and wireless propagation letters 2024-01, Vol.23 (12), p.4842-4846 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4846 |
container_issue | 12 |
container_start_page | 4842 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 23 |
creator | Lu, Sen Shen, Yizhu Ding, Yifan Hu, Sanming |
description | This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system. |
doi_str_mv | 10.1109/LAWP.2024.3476270 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LAWP_2024_3476270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10707361</ieee_id><sourcerecordid>3144173934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c914-d22fd01264d07cfe10e9b85eda4bbe9735264a00d85951b474e5058989304063</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKd_gOBDwOfOpEma9rFOnYMNB5vssaTNtcuoyUxbYf71tmwPPt0d33f3cT-E7imZUEqSp0W6XU1CEvIJ4zIKJblAIyp4HAgp5OXQsyigYSiu0U3T7AmhMhJshH5fgmdlNZ5NV9ugdcFW_UDVGQ1445VtTGucxZ-NsRVem9oU_bQ0hXdfqtgZCxpvoNhZV7vqiEvn8apWVnk8ty1UXrW9YbmcT_EQkR7At50HnPaiteoWXZWqbuDuXMdo_fa6mb4Hi4_ZfJougiKhPNBhWGpCw4hrIosSKIEkjwVoxfMcEslELylCdCwSQXMuOQgi4iROGOEkYmP0eLp68O67g6bN9q7ztg_MGOWcSpYw3rvoydW_1jQeyuzgzZfyx4ySbACcDYCzAXB2BtzvPJx2DAD880siWUTZH37Idko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144173934</pqid></control><display><type>article</type><title>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Sen ; Shen, Yizhu ; Ding, Yifan ; Hu, Sanming</creator><creatorcontrib>Lu, Sen ; Shen, Yizhu ; Ding, Yifan ; Hu, Sanming</creatorcontrib><description>This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2024.3476270</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Apertures ; Circuit boards ; Coplanar waveguides ; Coupled modes ; Coupling ; Couplings ; D band ; Dielectrics ; Electromagnetic waveguides ; ground coplanar waveguide (GCPW)-to-waveguide transition ; Insertion loss ; Metals ; Micromachining ; MMIC (circuits) ; Multilayers ; planar integration ; Planar waveguides ; Printed circuits ; Radio frequency ; radio-frequency (RF) front end ; Rectangular waveguides ; Short circuits ; Silicon ; silicon micromachined technology ; Silicon substrates ; Terahertz frequencies ; Waveguide transitions</subject><ispartof>IEEE antennas and wireless propagation letters, 2024-01, Vol.23 (12), p.4842-4846</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6544-2868 ; 0000-0003-1167-2307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10707361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Sen</creatorcontrib><creatorcontrib>Shen, Yizhu</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Hu, Sanming</creatorcontrib><title>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system.</description><subject>Antennas</subject><subject>Apertures</subject><subject>Circuit boards</subject><subject>Coplanar waveguides</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>Couplings</subject><subject>D band</subject><subject>Dielectrics</subject><subject>Electromagnetic waveguides</subject><subject>ground coplanar waveguide (GCPW)-to-waveguide transition</subject><subject>Insertion loss</subject><subject>Metals</subject><subject>Micromachining</subject><subject>MMIC (circuits)</subject><subject>Multilayers</subject><subject>planar integration</subject><subject>Planar waveguides</subject><subject>Printed circuits</subject><subject>Radio frequency</subject><subject>radio-frequency (RF) front end</subject><subject>Rectangular waveguides</subject><subject>Short circuits</subject><subject>Silicon</subject><subject>silicon micromachined technology</subject><subject>Silicon substrates</subject><subject>Terahertz frequencies</subject><subject>Waveguide transitions</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkNFLwzAQxoMoOKd_gOBDwOfOpEma9rFOnYMNB5vssaTNtcuoyUxbYf71tmwPPt0d33f3cT-E7imZUEqSp0W6XU1CEvIJ4zIKJblAIyp4HAgp5OXQsyigYSiu0U3T7AmhMhJshH5fgmdlNZ5NV9ugdcFW_UDVGQ1445VtTGucxZ-NsRVem9oU_bQ0hXdfqtgZCxpvoNhZV7vqiEvn8apWVnk8ty1UXrW9YbmcT_EQkR7At50HnPaiteoWXZWqbuDuXMdo_fa6mb4Hi4_ZfJougiKhPNBhWGpCw4hrIosSKIEkjwVoxfMcEslELylCdCwSQXMuOQgi4iROGOEkYmP0eLp68O67g6bN9q7ztg_MGOWcSpYw3rvoydW_1jQeyuzgzZfyx4ySbACcDYCzAXB2BtzvPJx2DAD880siWUTZH37Idko</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lu, Sen</creator><creator>Shen, Yizhu</creator><creator>Ding, Yifan</creator><creator>Hu, Sanming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6544-2868</orcidid><orcidid>https://orcid.org/0000-0003-1167-2307</orcidid></search><sort><creationdate>20240101</creationdate><title>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</title><author>Lu, Sen ; Shen, Yizhu ; Ding, Yifan ; Hu, Sanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c914-d22fd01264d07cfe10e9b85eda4bbe9735264a00d85951b474e5058989304063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antennas</topic><topic>Apertures</topic><topic>Circuit boards</topic><topic>Coplanar waveguides</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>Couplings</topic><topic>D band</topic><topic>Dielectrics</topic><topic>Electromagnetic waveguides</topic><topic>ground coplanar waveguide (GCPW)-to-waveguide transition</topic><topic>Insertion loss</topic><topic>Metals</topic><topic>Micromachining</topic><topic>MMIC (circuits)</topic><topic>Multilayers</topic><topic>planar integration</topic><topic>Planar waveguides</topic><topic>Printed circuits</topic><topic>Radio frequency</topic><topic>radio-frequency (RF) front end</topic><topic>Rectangular waveguides</topic><topic>Short circuits</topic><topic>Silicon</topic><topic>silicon micromachined technology</topic><topic>Silicon substrates</topic><topic>Terahertz frequencies</topic><topic>Waveguide transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Sen</creatorcontrib><creatorcontrib>Shen, Yizhu</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Hu, Sanming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Sen</au><au>Shen, Yizhu</au><au>Ding, Yifan</au><au>Hu, Sanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>23</volume><issue>12</issue><spage>4842</spage><epage>4846</epage><pages>4842-4846</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2024.3476270</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6544-2868</orcidid><orcidid>https://orcid.org/0000-0003-1167-2307</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2024-01, Vol.23 (12), p.4842-4846 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LAWP_2024_3476270 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Antennas Apertures Circuit boards Coplanar waveguides Coupled modes Coupling Couplings D band Dielectrics Electromagnetic waveguides ground coplanar waveguide (GCPW)-to-waveguide transition Insertion loss Metals Micromachining MMIC (circuits) Multilayers planar integration Planar waveguides Printed circuits Radio frequency radio-frequency (RF) front end Rectangular waveguides Short circuits Silicon silicon micromachined technology Silicon substrates Terahertz frequencies Waveguide transitions |
title | D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-Band%20GCPW-to-Waveguide%20Transition%20Using%20Silicon%20Micromachined%20Technology%20for%20Planar%20Integrated%20MMIC%20and%20Aperture%20Antenna&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Lu,%20Sen&rft.date=2024-01-01&rft.volume=23&rft.issue=12&rft.spage=4842&rft.epage=4846&rft.pages=4842-4846&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2024.3476270&rft_dat=%3Cproquest_cross%3E3144173934%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c914-d22fd01264d07cfe10e9b85eda4bbe9735264a00d85951b474e5058989304063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144173934&rft_id=info:pmid/&rft_ieee_id=10707361&rfr_iscdi=true |