Loading…

D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna

This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE antennas and wireless propagation letters 2024-01, Vol.23 (12), p.4842-4846
Main Authors: Lu, Sen, Shen, Yizhu, Ding, Yifan, Hu, Sanming
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4846
container_issue 12
container_start_page 4842
container_title IEEE antennas and wireless propagation letters
container_volume 23
creator Lu, Sen
Shen, Yizhu
Ding, Yifan
Hu, Sanming
description This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system.
doi_str_mv 10.1109/LAWP.2024.3476270
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LAWP_2024_3476270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10707361</ieee_id><sourcerecordid>3144173934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c914-d22fd01264d07cfe10e9b85eda4bbe9735264a00d85951b474e5058989304063</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKd_gOBDwOfOpEma9rFOnYMNB5vssaTNtcuoyUxbYf71tmwPPt0d33f3cT-E7imZUEqSp0W6XU1CEvIJ4zIKJblAIyp4HAgp5OXQsyigYSiu0U3T7AmhMhJshH5fgmdlNZ5NV9ugdcFW_UDVGQ1445VtTGucxZ-NsRVem9oU_bQ0hXdfqtgZCxpvoNhZV7vqiEvn8apWVnk8ty1UXrW9YbmcT_EQkR7At50HnPaiteoWXZWqbuDuXMdo_fa6mb4Hi4_ZfJougiKhPNBhWGpCw4hrIosSKIEkjwVoxfMcEslELylCdCwSQXMuOQgi4iROGOEkYmP0eLp68O67g6bN9q7ztg_MGOWcSpYw3rvoydW_1jQeyuzgzZfyx4ySbACcDYCzAXB2BtzvPJx2DAD880siWUTZH37Idko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144173934</pqid></control><display><type>article</type><title>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lu, Sen ; Shen, Yizhu ; Ding, Yifan ; Hu, Sanming</creator><creatorcontrib>Lu, Sen ; Shen, Yizhu ; Ding, Yifan ; Hu, Sanming</creatorcontrib><description>This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2024.3476270</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Apertures ; Circuit boards ; Coplanar waveguides ; Coupled modes ; Coupling ; Couplings ; D band ; Dielectrics ; Electromagnetic waveguides ; ground coplanar waveguide (GCPW)-to-waveguide transition ; Insertion loss ; Metals ; Micromachining ; MMIC (circuits) ; Multilayers ; planar integration ; Planar waveguides ; Printed circuits ; Radio frequency ; radio-frequency (RF) front end ; Rectangular waveguides ; Short circuits ; Silicon ; silicon micromachined technology ; Silicon substrates ; Terahertz frequencies ; Waveguide transitions</subject><ispartof>IEEE antennas and wireless propagation letters, 2024-01, Vol.23 (12), p.4842-4846</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6544-2868 ; 0000-0003-1167-2307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10707361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lu, Sen</creatorcontrib><creatorcontrib>Shen, Yizhu</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Hu, Sanming</creatorcontrib><title>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system.</description><subject>Antennas</subject><subject>Apertures</subject><subject>Circuit boards</subject><subject>Coplanar waveguides</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>Couplings</subject><subject>D band</subject><subject>Dielectrics</subject><subject>Electromagnetic waveguides</subject><subject>ground coplanar waveguide (GCPW)-to-waveguide transition</subject><subject>Insertion loss</subject><subject>Metals</subject><subject>Micromachining</subject><subject>MMIC (circuits)</subject><subject>Multilayers</subject><subject>planar integration</subject><subject>Planar waveguides</subject><subject>Printed circuits</subject><subject>Radio frequency</subject><subject>radio-frequency (RF) front end</subject><subject>Rectangular waveguides</subject><subject>Short circuits</subject><subject>Silicon</subject><subject>silicon micromachined technology</subject><subject>Silicon substrates</subject><subject>Terahertz frequencies</subject><subject>Waveguide transitions</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkNFLwzAQxoMoOKd_gOBDwOfOpEma9rFOnYMNB5vssaTNtcuoyUxbYf71tmwPPt0d33f3cT-E7imZUEqSp0W6XU1CEvIJ4zIKJblAIyp4HAgp5OXQsyigYSiu0U3T7AmhMhJshH5fgmdlNZ5NV9ugdcFW_UDVGQ1445VtTGucxZ-NsRVem9oU_bQ0hXdfqtgZCxpvoNhZV7vqiEvn8apWVnk8ty1UXrW9YbmcT_EQkR7At50HnPaiteoWXZWqbuDuXMdo_fa6mb4Hi4_ZfJougiKhPNBhWGpCw4hrIosSKIEkjwVoxfMcEslELylCdCwSQXMuOQgi4iROGOEkYmP0eLp68O67g6bN9q7ztg_MGOWcSpYw3rvoydW_1jQeyuzgzZfyx4ySbACcDYCzAXB2BtzvPJx2DAD880siWUTZH37Idko</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lu, Sen</creator><creator>Shen, Yizhu</creator><creator>Ding, Yifan</creator><creator>Hu, Sanming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6544-2868</orcidid><orcidid>https://orcid.org/0000-0003-1167-2307</orcidid></search><sort><creationdate>20240101</creationdate><title>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</title><author>Lu, Sen ; Shen, Yizhu ; Ding, Yifan ; Hu, Sanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c914-d22fd01264d07cfe10e9b85eda4bbe9735264a00d85951b474e5058989304063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antennas</topic><topic>Apertures</topic><topic>Circuit boards</topic><topic>Coplanar waveguides</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>Couplings</topic><topic>D band</topic><topic>Dielectrics</topic><topic>Electromagnetic waveguides</topic><topic>ground coplanar waveguide (GCPW)-to-waveguide transition</topic><topic>Insertion loss</topic><topic>Metals</topic><topic>Micromachining</topic><topic>MMIC (circuits)</topic><topic>Multilayers</topic><topic>planar integration</topic><topic>Planar waveguides</topic><topic>Printed circuits</topic><topic>Radio frequency</topic><topic>radio-frequency (RF) front end</topic><topic>Rectangular waveguides</topic><topic>Short circuits</topic><topic>Silicon</topic><topic>silicon micromachined technology</topic><topic>Silicon substrates</topic><topic>Terahertz frequencies</topic><topic>Waveguide transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Sen</creatorcontrib><creatorcontrib>Shen, Yizhu</creatorcontrib><creatorcontrib>Ding, Yifan</creatorcontrib><creatorcontrib>Hu, Sanming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Sen</au><au>Shen, Yizhu</au><au>Ding, Yifan</au><au>Hu, Sanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>23</volume><issue>12</issue><spage>4842</spage><epage>4846</epage><pages>4842-4846</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>This letter proposes a D-band transversal transition from a ground coplanar waveguide (GCPW) to an air waveguide. Such design is critical to the radio frequency (RF) front end between the monolithic microwave integration circuit (MMIC) and aperture antenna especially in sub-terahertz frequency due to the high loss in dielectric substrate. Silicon micromachined technology, as an advanced packaging technology, not only features a multilayer arrangement similar to the printed circuit board (PCB) technology, but also supports the development of air cavities inside it, such as the rectangular waveguide. Adopting this technology, a WR-6 waveguide with a reduced height of 150 µm is developed within silicon substrates. Moreover, inspired by the classical aperture-coupled antenna, a magnetic coupling structure comprising a short-circuit end and a same-layer coupling aperture are proposed to facilitate the mode transformation from quasi-TEM to TE 10 . Benefiting from this structure, the signal from GCPW is effectively transmitted to the waveguide. Measurements of two back-to-back prototypes indicate that the average insertion loss of one proposed transition is 0.355 dB within D band, and the 1 mm-length waveguide induces loss of 0.075 dB, respectively. The transition is with low profile of 400 µm and a wide bandwidth of 42.9%, which is promising for planar sub-terahertz system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2024.3476270</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6544-2868</orcidid><orcidid>https://orcid.org/0000-0003-1167-2307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2024-01, Vol.23 (12), p.4842-4846
issn 1536-1225
1548-5757
language eng
recordid cdi_crossref_primary_10_1109_LAWP_2024_3476270
source IEEE Electronic Library (IEL) Journals
subjects Antennas
Apertures
Circuit boards
Coplanar waveguides
Coupled modes
Coupling
Couplings
D band
Dielectrics
Electromagnetic waveguides
ground coplanar waveguide (GCPW)-to-waveguide transition
Insertion loss
Metals
Micromachining
MMIC (circuits)
Multilayers
planar integration
Planar waveguides
Printed circuits
Radio frequency
radio-frequency (RF) front end
Rectangular waveguides
Short circuits
Silicon
silicon micromachined technology
Silicon substrates
Terahertz frequencies
Waveguide transitions
title D-Band GCPW-to-Waveguide Transition Using Silicon Micromachined Technology for Planar Integrated MMIC and Aperture Antenna
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-Band%20GCPW-to-Waveguide%20Transition%20Using%20Silicon%20Micromachined%20Technology%20for%20Planar%20Integrated%20MMIC%20and%20Aperture%20Antenna&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Lu,%20Sen&rft.date=2024-01-01&rft.volume=23&rft.issue=12&rft.spage=4842&rft.epage=4846&rft.pages=4842-4846&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2024.3476270&rft_dat=%3Cproquest_cross%3E3144173934%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c914-d22fd01264d07cfe10e9b85eda4bbe9735264a00d85951b474e5058989304063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144173934&rft_id=info:pmid/&rft_ieee_id=10707361&rfr_iscdi=true