Loading…
Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning
This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) m...
Saved in:
Published in: | IEEE communications letters 2024-08, Vol.28 (8), p.1845-1849 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23 |
container_end_page | 1849 |
container_issue | 8 |
container_start_page | 1845 |
container_title | IEEE communications letters |
container_volume | 28 |
creator | Jing, Lianyou Dong, Chaofan He, Chengbing Shi, Wentao Wang, Han Zhou, Yi |
description | This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities. |
doi_str_mv | 10.1109/LCOMM.2024.3418192 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2024_3418192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10569021</ieee_id><sourcerecordid>3092920973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xTbCfx41giCkiJeqA9W47toFRtXGwHxL_HfRy47O5hvtnRAHCP0QxjJJ7qatk0M4JIMcsLzLEgF2CCy5JnJI3LdCMuMsYEvwY3IWwQQpyUeALU3Kh97L8tbJwZtyr2boBqMLByph8-Yec8XA_G-h8VrYdz7cYQew2Xq8VH0ux249DrIxXgswrWwMQ3NqqstsoPyeIWXHVqG-zdeU_BevGyqt6yevn6Xs3rTGPGYsawRswy3ZkUrRRCUNMaynhBiSkF4bzFOOfImq6whrS0SPk1JbSkqiVGkXwKHk--e---Rhui3LjRD-mlzJEggiDB8qQiJ5X2LgRvO7n3_U75X4mRPFQpj1XKQ5XyXGWCHk5Qb639B5RUIILzPyNEb2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092920973</pqid></control><display><type>article</type><title>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jing, Lianyou ; Dong, Chaofan ; He, Chengbing ; Shi, Wentao ; Wang, Han ; Zhou, Yi</creator><creatorcontrib>Jing, Lianyou ; Dong, Chaofan ; He, Chengbing ; Shi, Wentao ; Wang, Han ; Zhou, Yi</creatorcontrib><description>This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3418192</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive modulation and coding ; Algorithms ; Artificial neural networks ; Channels ; Coding ; convolutional neural network ; Convolutional neural networks ; Deep learning ; Feature extraction ; Kernel ; Machine learning ; meta-learning ; Modulation ; orthogonal time frequency space ; Symbols ; Task analysis ; Time-frequency analysis ; Underwater acoustic communications ; Underwater acoustics</subject><ispartof>IEEE communications letters, 2024-08, Vol.28 (8), p.1845-1849</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23</cites><orcidid>0000-0003-4491-7024 ; 0000-0002-0847-9701 ; 0000-0003-4555-0324 ; 0000-0002-3909-0555 ; 0000-0002-8390-3787 ; 0000-0001-6213-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10569021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Jing, Lianyou</creatorcontrib><creatorcontrib>Dong, Chaofan</creatorcontrib><creatorcontrib>He, Chengbing</creatorcontrib><creatorcontrib>Shi, Wentao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><title>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.</description><subject>adaptive modulation and coding</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Channels</subject><subject>Coding</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>meta-learning</subject><subject>Modulation</subject><subject>orthogonal time frequency space</subject><subject>Symbols</subject><subject>Task analysis</subject><subject>Time-frequency analysis</subject><subject>Underwater acoustic communications</subject><subject>Underwater acoustics</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xTbCfx41giCkiJeqA9W47toFRtXGwHxL_HfRy47O5hvtnRAHCP0QxjJJ7qatk0M4JIMcsLzLEgF2CCy5JnJI3LdCMuMsYEvwY3IWwQQpyUeALU3Kh97L8tbJwZtyr2boBqMLByph8-Yec8XA_G-h8VrYdz7cYQew2Xq8VH0ux249DrIxXgswrWwMQ3NqqstsoPyeIWXHVqG-zdeU_BevGyqt6yevn6Xs3rTGPGYsawRswy3ZkUrRRCUNMaynhBiSkF4bzFOOfImq6whrS0SPk1JbSkqiVGkXwKHk--e---Rhui3LjRD-mlzJEggiDB8qQiJ5X2LgRvO7n3_U75X4mRPFQpj1XKQ5XyXGWCHk5Qb639B5RUIILzPyNEb2s</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jing, Lianyou</creator><creator>Dong, Chaofan</creator><creator>He, Chengbing</creator><creator>Shi, Wentao</creator><creator>Wang, Han</creator><creator>Zhou, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4491-7024</orcidid><orcidid>https://orcid.org/0000-0002-0847-9701</orcidid><orcidid>https://orcid.org/0000-0003-4555-0324</orcidid><orcidid>https://orcid.org/0000-0002-3909-0555</orcidid><orcidid>https://orcid.org/0000-0002-8390-3787</orcidid><orcidid>https://orcid.org/0000-0001-6213-2082</orcidid></search><sort><creationdate>20240801</creationdate><title>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</title><author>Jing, Lianyou ; Dong, Chaofan ; He, Chengbing ; Shi, Wentao ; Wang, Han ; Zhou, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive modulation and coding</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Channels</topic><topic>Coding</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>meta-learning</topic><topic>Modulation</topic><topic>orthogonal time frequency space</topic><topic>Symbols</topic><topic>Task analysis</topic><topic>Time-frequency analysis</topic><topic>Underwater acoustic communications</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Lianyou</creatorcontrib><creatorcontrib>Dong, Chaofan</creatorcontrib><creatorcontrib>He, Chengbing</creatorcontrib><creatorcontrib>Shi, Wentao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Lianyou</au><au>Dong, Chaofan</au><au>He, Chengbing</au><au>Shi, Wentao</au><au>Wang, Han</au><au>Zhou, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>28</volume><issue>8</issue><spage>1845</spage><epage>1849</epage><pages>1845-1849</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3418192</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4491-7024</orcidid><orcidid>https://orcid.org/0000-0002-0847-9701</orcidid><orcidid>https://orcid.org/0000-0003-4555-0324</orcidid><orcidid>https://orcid.org/0000-0002-3909-0555</orcidid><orcidid>https://orcid.org/0000-0002-8390-3787</orcidid><orcidid>https://orcid.org/0000-0001-6213-2082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2024-08, Vol.28 (8), p.1845-1849 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCOMM_2024_3418192 |
source | IEEE Electronic Library (IEL) Journals |
subjects | adaptive modulation and coding Algorithms Artificial neural networks Channels Coding convolutional neural network Convolutional neural networks Deep learning Feature extraction Kernel Machine learning meta-learning Modulation orthogonal time frequency space Symbols Task analysis Time-frequency analysis Underwater acoustic communications Underwater acoustics |
title | Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Modulation%20and%20Coding%20for%20Underwater%20Acoustic%20OTFS%20Communications%20Based%20on%20Meta-Learning&rft.jtitle=IEEE%20communications%20letters&rft.au=Jing,%20Lianyou&rft.date=2024-08-01&rft.volume=28&rft.issue=8&rft.spage=1845&rft.epage=1849&rft.pages=1845-1849&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3418192&rft_dat=%3Cproquest_cross%3E3092920973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092920973&rft_id=info:pmid/&rft_ieee_id=10569021&rfr_iscdi=true |