Loading…

Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning

This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters 2024-08, Vol.28 (8), p.1845-1849
Main Authors: Jing, Lianyou, Dong, Chaofan, He, Chengbing, Shi, Wentao, Wang, Han, Zhou, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23
container_end_page 1849
container_issue 8
container_start_page 1845
container_title IEEE communications letters
container_volume 28
creator Jing, Lianyou
Dong, Chaofan
He, Chengbing
Shi, Wentao
Wang, Han
Zhou, Yi
description This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.
doi_str_mv 10.1109/LCOMM.2024.3418192
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2024_3418192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10569021</ieee_id><sourcerecordid>3092920973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xTbCfx41giCkiJeqA9W47toFRtXGwHxL_HfRy47O5hvtnRAHCP0QxjJJ7qatk0M4JIMcsLzLEgF2CCy5JnJI3LdCMuMsYEvwY3IWwQQpyUeALU3Kh97L8tbJwZtyr2boBqMLByph8-Yec8XA_G-h8VrYdz7cYQew2Xq8VH0ux249DrIxXgswrWwMQ3NqqstsoPyeIWXHVqG-zdeU_BevGyqt6yevn6Xs3rTGPGYsawRswy3ZkUrRRCUNMaynhBiSkF4bzFOOfImq6whrS0SPk1JbSkqiVGkXwKHk--e---Rhui3LjRD-mlzJEggiDB8qQiJ5X2LgRvO7n3_U75X4mRPFQpj1XKQ5XyXGWCHk5Qb639B5RUIILzPyNEb2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092920973</pqid></control><display><type>article</type><title>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jing, Lianyou ; Dong, Chaofan ; He, Chengbing ; Shi, Wentao ; Wang, Han ; Zhou, Yi</creator><creatorcontrib>Jing, Lianyou ; Dong, Chaofan ; He, Chengbing ; Shi, Wentao ; Wang, Han ; Zhou, Yi</creatorcontrib><description>This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3418192</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive modulation and coding ; Algorithms ; Artificial neural networks ; Channels ; Coding ; convolutional neural network ; Convolutional neural networks ; Deep learning ; Feature extraction ; Kernel ; Machine learning ; meta-learning ; Modulation ; orthogonal time frequency space ; Symbols ; Task analysis ; Time-frequency analysis ; Underwater acoustic communications ; Underwater acoustics</subject><ispartof>IEEE communications letters, 2024-08, Vol.28 (8), p.1845-1849</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23</cites><orcidid>0000-0003-4491-7024 ; 0000-0002-0847-9701 ; 0000-0003-4555-0324 ; 0000-0002-3909-0555 ; 0000-0002-8390-3787 ; 0000-0001-6213-2082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10569021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Jing, Lianyou</creatorcontrib><creatorcontrib>Dong, Chaofan</creatorcontrib><creatorcontrib>He, Chengbing</creatorcontrib><creatorcontrib>Shi, Wentao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><title>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.</description><subject>adaptive modulation and coding</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Channels</subject><subject>Coding</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>meta-learning</subject><subject>Modulation</subject><subject>orthogonal time frequency space</subject><subject>Symbols</subject><subject>Task analysis</subject><subject>Time-frequency analysis</subject><subject>Underwater acoustic communications</subject><subject>Underwater acoustics</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EEqXwBxAHS5xTbCfx41giCkiJeqA9W47toFRtXGwHxL_HfRy47O5hvtnRAHCP0QxjJJ7qatk0M4JIMcsLzLEgF2CCy5JnJI3LdCMuMsYEvwY3IWwQQpyUeALU3Kh97L8tbJwZtyr2boBqMLByph8-Yec8XA_G-h8VrYdz7cYQew2Xq8VH0ux249DrIxXgswrWwMQ3NqqstsoPyeIWXHVqG-zdeU_BevGyqt6yevn6Xs3rTGPGYsawRswy3ZkUrRRCUNMaynhBiSkF4bzFOOfImq6whrS0SPk1JbSkqiVGkXwKHk--e---Rhui3LjRD-mlzJEggiDB8qQiJ5X2LgRvO7n3_U75X4mRPFQpj1XKQ5XyXGWCHk5Qb639B5RUIILzPyNEb2s</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jing, Lianyou</creator><creator>Dong, Chaofan</creator><creator>He, Chengbing</creator><creator>Shi, Wentao</creator><creator>Wang, Han</creator><creator>Zhou, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4491-7024</orcidid><orcidid>https://orcid.org/0000-0002-0847-9701</orcidid><orcidid>https://orcid.org/0000-0003-4555-0324</orcidid><orcidid>https://orcid.org/0000-0002-3909-0555</orcidid><orcidid>https://orcid.org/0000-0002-8390-3787</orcidid><orcidid>https://orcid.org/0000-0001-6213-2082</orcidid></search><sort><creationdate>20240801</creationdate><title>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</title><author>Jing, Lianyou ; Dong, Chaofan ; He, Chengbing ; Shi, Wentao ; Wang, Han ; Zhou, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive modulation and coding</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Channels</topic><topic>Coding</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>meta-learning</topic><topic>Modulation</topic><topic>orthogonal time frequency space</topic><topic>Symbols</topic><topic>Task analysis</topic><topic>Time-frequency analysis</topic><topic>Underwater acoustic communications</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Lianyou</creatorcontrib><creatorcontrib>Dong, Chaofan</creatorcontrib><creatorcontrib>He, Chengbing</creatorcontrib><creatorcontrib>Shi, Wentao</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Lianyou</au><au>Dong, Chaofan</au><au>He, Chengbing</au><au>Shi, Wentao</au><au>Wang, Han</au><au>Zhou, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>28</volume><issue>8</issue><spage>1845</spage><epage>1849</epage><pages>1845-1849</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter proposes an adaptive modulation and coding (AMC) scheme based on deep learning for underwater acoustic (UWA) communications. To achieve good communication performance in fast time-varying UWA channels, the proposed AMC scheme is implemented on the orthogonal time-frequency space (OTFS) modulation system. We design an end-to-end deep convolutional neural network (CNN) to capture the channel features and determine the optimal modulation and coding scheme. Additionally, we utilize a meta-learning algorithm to address environment mismatch in real-world UWA applications. This algorithm effectively adapts the CNN model from a given UWA environment to a new UWA environment with only a small amount of data. The performance of the proposed scheme is verified through real-world measured channels. Simulation results demonstrate that the proposed method outperforms existing machine learning-based AMC and fixed modulation and coding schemes in various UWA scenarios, offering better communication throughput and stronger learning capabilities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3418192</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4491-7024</orcidid><orcidid>https://orcid.org/0000-0002-0847-9701</orcidid><orcidid>https://orcid.org/0000-0003-4555-0324</orcidid><orcidid>https://orcid.org/0000-0002-3909-0555</orcidid><orcidid>https://orcid.org/0000-0002-8390-3787</orcidid><orcidid>https://orcid.org/0000-0001-6213-2082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2024-08, Vol.28 (8), p.1845-1849
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2024_3418192
source IEEE Electronic Library (IEL) Journals
subjects adaptive modulation and coding
Algorithms
Artificial neural networks
Channels
Coding
convolutional neural network
Convolutional neural networks
Deep learning
Feature extraction
Kernel
Machine learning
meta-learning
Modulation
orthogonal time frequency space
Symbols
Task analysis
Time-frequency analysis
Underwater acoustic communications
Underwater acoustics
title Adaptive Modulation and Coding for Underwater Acoustic OTFS Communications Based on Meta-Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Modulation%20and%20Coding%20for%20Underwater%20Acoustic%20OTFS%20Communications%20Based%20on%20Meta-Learning&rft.jtitle=IEEE%20communications%20letters&rft.au=Jing,%20Lianyou&rft.date=2024-08-01&rft.volume=28&rft.issue=8&rft.spage=1845&rft.epage=1849&rft.pages=1845-1849&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3418192&rft_dat=%3Cproquest_cross%3E3092920973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c177t-71c07e7cfd00859996dbd678462d59288b11380edf4ed2b64825c62656ab2da23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3092920973&rft_id=info:pmid/&rft_ieee_id=10569021&rfr_iscdi=true