Loading…
High-Performance Programmable Metallization Cell Memory With the Pyramid-Structured Electrode
The pyramid structure fabricated with the potassium hydroxide (KOH) anisotropically etched (100) silicon substrate has been deposited with a copper film as the bottom electrode of the programmable metallization cell (PMC) memory to significantly improve the resistive switching characteristic. As com...
Saved in:
Published in: | IEEE electron device letters 2013-10, Vol.34 (10), p.1244-1246 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The pyramid structure fabricated with the potassium hydroxide (KOH) anisotropically etched (100) silicon substrate has been deposited with a copper film as the bottom electrode of the programmable metallization cell (PMC) memory to significantly improve the resistive switching characteristic. As compared with the conventional flat copper electrode, this pyramid-structured electrode exhibited the set/reset voltage as low as 1/0.6 V and superior endurance of 2400 cycles at the set/reset voltages of -5/+3 V for the voltages pulsewidth of 1 μs. The high performance of this PMC could be attributed to high local electrical fields at the tips of the pyramid structure, resulting in the formation of the narrower conductive filaments that facilitate the lower operation voltage and better endurance. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2013.2275851 |