Loading…
Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers
The thermal properties of GaN-on-diamond high-electron mobility transistor (HEMT) wafers from 25 °C to 250 °C are reported. The effective thermal boundary resistance between GaN and diamond decreases at elevated temperatures due to the increasing thermal conductivity of the amorphous SiNx interlayer...
Saved in:
Published in: | IEEE electron device letters 2016-05, Vol.37 (5), p.621-624 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The thermal properties of GaN-on-diamond high-electron mobility transistor (HEMT) wafers from 25 °C to 250 °C are reported. The effective thermal boundary resistance between GaN and diamond decreases at elevated temperatures due to the increasing thermal conductivity of the amorphous SiNx interlayer, therefore potentially counteracting thermal runaway of devices. The results demonstrate the thermal benefit of GaN-on-diamond for HEMT high-power operations, and provide valuable information for assessing the thermal resistance and reliability of devices. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2016.2537835 |