Loading…

Tunable Stability of All-Inkjet-Printed Double-Gate Carbon Nanotube Thin Film Transistors

In this letter, we improved the stability of all-inkjet-printed carbon nanotube thin film transistors (CNT TFTs) by employing a double gate (DG) structure under an optimal bias condition. In the single-gate structure, the positive threshold voltage (VTH) shift under 10 V positive gate bias stress (P...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2020-06, Vol.41 (6), p.860-863
Main Authors: Yoo, Hyunjun, Ha, Jewook, Kim, Hyeonggyu, Seo, Jiseok, Lee, Soo-Yeon, Hong, Yongtaek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-67546359ec8c509b87df2c699bde71e8c637160f755d52394355c249574960f33
cites cdi_FETCH-LOGICAL-c291t-67546359ec8c509b87df2c699bde71e8c637160f755d52394355c249574960f33
container_end_page 863
container_issue 6
container_start_page 860
container_title IEEE electron device letters
container_volume 41
creator Yoo, Hyunjun
Ha, Jewook
Kim, Hyeonggyu
Seo, Jiseok
Lee, Soo-Yeon
Hong, Yongtaek
description In this letter, we improved the stability of all-inkjet-printed carbon nanotube thin film transistors (CNT TFTs) by employing a double gate (DG) structure under an optimal bias condition. In the single-gate structure, the positive threshold voltage (VTH) shift under 10 V positive gate bias stress (PGBS) was significantly reduced with poly(4-vinylphenol) passivation. However, after 100 s, the on-current level was decreased, and a large negative VTH shift was observed. We adopted DG CNT TFTs for a further improvement. When -3 V was applied to the top gate, the DG CNT TFTs not only exhibited a much lower VTH shift but also showed a stabilized on-current level. When an appropriate bias is applied to the top gate, charge trapping is induced at the top gate interface and it might balance between the positive and negative shifts. As a result, the overall stress effect is reduced. The p-type only inverter adopting a DG CNT TFT showed improved stability under -3 V of top gate bias. Our experimental result shows that DG structure is a promising candidate for various CNT circuit designs.
doi_str_mv 10.1109/LED.2020.2990701
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2020_2990701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9079497</ieee_id><sourcerecordid>2406701475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-67546359ec8c509b87df2c699bde71e8c637160f755d52394355c249574960f33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAc-rkuzmW1tZCUcH14GnJ7mYxdbtbk-yh_94tLZ4G3nneGXgQuqcwoRTM0-Z5MWHAYMKMAQ30Ao2olFMCUvFLNAItKOEU1DW6iXELQIXQYoS-sr61RePwR7KFb3w64K7Gs6Yh6_Zn6xJ5D75NrsKLrh8wsrLJ4bkNRdfiV9t2qS8czr59i5e-2eEs2Db6mLoQb9FVbZvo7s5zjD6Xz9n8hWzeVuv5bENKZmgiSkuhuDSunJYSTDHVVc1KZUxROU3dtFRcUwW1lrKSjBvBpSyZMFILM8Scj9Hj6e4-dL-9iynfdn1oh5c5E6AGFULLgYITVYYuxuDqfB_8zoZDTiE_CswHgflRYH4WOFQeThXvnPvHh50RRvM_GuNqCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406701475</pqid></control><display><type>article</type><title>Tunable Stability of All-Inkjet-Printed Double-Gate Carbon Nanotube Thin Film Transistors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yoo, Hyunjun ; Ha, Jewook ; Kim, Hyeonggyu ; Seo, Jiseok ; Lee, Soo-Yeon ; Hong, Yongtaek</creator><creatorcontrib>Yoo, Hyunjun ; Ha, Jewook ; Kim, Hyeonggyu ; Seo, Jiseok ; Lee, Soo-Yeon ; Hong, Yongtaek</creatorcontrib><description>In this letter, we improved the stability of all-inkjet-printed carbon nanotube thin film transistors (CNT TFTs) by employing a double gate (DG) structure under an optimal bias condition. In the single-gate structure, the positive threshold voltage (VTH) shift under 10 V positive gate bias stress (PGBS) was significantly reduced with poly(4-vinylphenol) passivation. However, after 100 s, the on-current level was decreased, and a large negative VTH shift was observed. We adopted DG CNT TFTs for a further improvement. When -3 V was applied to the top gate, the DG CNT TFTs not only exhibited a much lower VTH shift but also showed a stabilized on-current level. When an appropriate bias is applied to the top gate, charge trapping is induced at the top gate interface and it might balance between the positive and negative shifts. As a result, the overall stress effect is reduced. The p-type only inverter adopting a DG CNT TFT showed improved stability under -3 V of top gate bias. Our experimental result shows that DG structure is a promising candidate for various CNT circuit designs.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.2990701</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Carbon nanotubes ; Circuit design ; Circuit stability ; Dielectrics ; double-gate FETs ; Inverters ; Ions ; Logic gates ; Passivation ; Semiconductor devices ; solution process ; Stability ; Stress ; Thin film transistors ; Thin films ; Threshold voltage ; Transistors</subject><ispartof>IEEE electron device letters, 2020-06, Vol.41 (6), p.860-863</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-67546359ec8c509b87df2c699bde71e8c637160f755d52394355c249574960f33</citedby><cites>FETCH-LOGICAL-c291t-67546359ec8c509b87df2c699bde71e8c637160f755d52394355c249574960f33</cites><orcidid>0000-0002-7782-0758 ; 0000-0003-1030-5628 ; 0000-0001-9399-5948 ; 0000-0002-2605-6825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9079497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Yoo, Hyunjun</creatorcontrib><creatorcontrib>Ha, Jewook</creatorcontrib><creatorcontrib>Kim, Hyeonggyu</creatorcontrib><creatorcontrib>Seo, Jiseok</creatorcontrib><creatorcontrib>Lee, Soo-Yeon</creatorcontrib><creatorcontrib>Hong, Yongtaek</creatorcontrib><title>Tunable Stability of All-Inkjet-Printed Double-Gate Carbon Nanotube Thin Film Transistors</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In this letter, we improved the stability of all-inkjet-printed carbon nanotube thin film transistors (CNT TFTs) by employing a double gate (DG) structure under an optimal bias condition. In the single-gate structure, the positive threshold voltage (VTH) shift under 10 V positive gate bias stress (PGBS) was significantly reduced with poly(4-vinylphenol) passivation. However, after 100 s, the on-current level was decreased, and a large negative VTH shift was observed. We adopted DG CNT TFTs for a further improvement. When -3 V was applied to the top gate, the DG CNT TFTs not only exhibited a much lower VTH shift but also showed a stabilized on-current level. When an appropriate bias is applied to the top gate, charge trapping is induced at the top gate interface and it might balance between the positive and negative shifts. As a result, the overall stress effect is reduced. The p-type only inverter adopting a DG CNT TFT showed improved stability under -3 V of top gate bias. Our experimental result shows that DG structure is a promising candidate for various CNT circuit designs.</description><subject>Bias</subject><subject>Carbon nanotubes</subject><subject>Circuit design</subject><subject>Circuit stability</subject><subject>Dielectrics</subject><subject>double-gate FETs</subject><subject>Inverters</subject><subject>Ions</subject><subject>Logic gates</subject><subject>Passivation</subject><subject>Semiconductor devices</subject><subject>solution process</subject><subject>Stability</subject><subject>Stress</subject><subject>Thin film transistors</subject><subject>Thin films</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvAc-rkuzmW1tZCUcH14GnJ7mYxdbtbk-yh_94tLZ4G3nneGXgQuqcwoRTM0-Z5MWHAYMKMAQ30Ao2olFMCUvFLNAItKOEU1DW6iXELQIXQYoS-sr61RePwR7KFb3w64K7Gs6Yh6_Zn6xJ5D75NrsKLrh8wsrLJ4bkNRdfiV9t2qS8czr59i5e-2eEs2Db6mLoQb9FVbZvo7s5zjD6Xz9n8hWzeVuv5bENKZmgiSkuhuDSunJYSTDHVVc1KZUxROU3dtFRcUwW1lrKSjBvBpSyZMFILM8Scj9Hj6e4-dL-9iynfdn1oh5c5E6AGFULLgYITVYYuxuDqfB_8zoZDTiE_CswHgflRYH4WOFQeThXvnPvHh50RRvM_GuNqCQ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Yoo, Hyunjun</creator><creator>Ha, Jewook</creator><creator>Kim, Hyeonggyu</creator><creator>Seo, Jiseok</creator><creator>Lee, Soo-Yeon</creator><creator>Hong, Yongtaek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7782-0758</orcidid><orcidid>https://orcid.org/0000-0003-1030-5628</orcidid><orcidid>https://orcid.org/0000-0001-9399-5948</orcidid><orcidid>https://orcid.org/0000-0002-2605-6825</orcidid></search><sort><creationdate>20200601</creationdate><title>Tunable Stability of All-Inkjet-Printed Double-Gate Carbon Nanotube Thin Film Transistors</title><author>Yoo, Hyunjun ; Ha, Jewook ; Kim, Hyeonggyu ; Seo, Jiseok ; Lee, Soo-Yeon ; Hong, Yongtaek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-67546359ec8c509b87df2c699bde71e8c637160f755d52394355c249574960f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Carbon nanotubes</topic><topic>Circuit design</topic><topic>Circuit stability</topic><topic>Dielectrics</topic><topic>double-gate FETs</topic><topic>Inverters</topic><topic>Ions</topic><topic>Logic gates</topic><topic>Passivation</topic><topic>Semiconductor devices</topic><topic>solution process</topic><topic>Stability</topic><topic>Stress</topic><topic>Thin film transistors</topic><topic>Thin films</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Hyunjun</creatorcontrib><creatorcontrib>Ha, Jewook</creatorcontrib><creatorcontrib>Kim, Hyeonggyu</creatorcontrib><creatorcontrib>Seo, Jiseok</creatorcontrib><creatorcontrib>Lee, Soo-Yeon</creatorcontrib><creatorcontrib>Hong, Yongtaek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Hyunjun</au><au>Ha, Jewook</au><au>Kim, Hyeonggyu</au><au>Seo, Jiseok</au><au>Lee, Soo-Yeon</au><au>Hong, Yongtaek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Stability of All-Inkjet-Printed Double-Gate Carbon Nanotube Thin Film Transistors</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>860</spage><epage>863</epage><pages>860-863</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In this letter, we improved the stability of all-inkjet-printed carbon nanotube thin film transistors (CNT TFTs) by employing a double gate (DG) structure under an optimal bias condition. In the single-gate structure, the positive threshold voltage (VTH) shift under 10 V positive gate bias stress (PGBS) was significantly reduced with poly(4-vinylphenol) passivation. However, after 100 s, the on-current level was decreased, and a large negative VTH shift was observed. We adopted DG CNT TFTs for a further improvement. When -3 V was applied to the top gate, the DG CNT TFTs not only exhibited a much lower VTH shift but also showed a stabilized on-current level. When an appropriate bias is applied to the top gate, charge trapping is induced at the top gate interface and it might balance between the positive and negative shifts. As a result, the overall stress effect is reduced. The p-type only inverter adopting a DG CNT TFT showed improved stability under -3 V of top gate bias. Our experimental result shows that DG structure is a promising candidate for various CNT circuit designs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.2990701</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7782-0758</orcidid><orcidid>https://orcid.org/0000-0003-1030-5628</orcidid><orcidid>https://orcid.org/0000-0001-9399-5948</orcidid><orcidid>https://orcid.org/0000-0002-2605-6825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2020-06, Vol.41 (6), p.860-863
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2020_2990701
source IEEE Electronic Library (IEL) Journals
subjects Bias
Carbon nanotubes
Circuit design
Circuit stability
Dielectrics
double-gate FETs
Inverters
Ions
Logic gates
Passivation
Semiconductor devices
solution process
Stability
Stress
Thin film transistors
Thin films
Threshold voltage
Transistors
title Tunable Stability of All-Inkjet-Printed Double-Gate Carbon Nanotube Thin Film Transistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Stability%20of%20All-Inkjet-Printed%20Double-Gate%20Carbon%20Nanotube%20Thin%20Film%20Transistors&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Yoo,%20Hyunjun&rft.date=2020-06-01&rft.volume=41&rft.issue=6&rft.spage=860&rft.epage=863&rft.pages=860-863&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.2990701&rft_dat=%3Cproquest_cross%3E2406701475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-67546359ec8c509b87df2c699bde71e8c637160f755d52394355c249574960f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2406701475&rft_id=info:pmid/&rft_ieee_id=9079497&rfr_iscdi=true