Loading…
Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory
We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. T...
Saved in:
Published in: | IEEE electron device letters 2020-08, Vol.41 (8), p.1197-1200 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633 |
container_end_page | 1200 |
container_issue | 8 |
container_start_page | 1197 |
container_title | IEEE electron device letters |
container_volume | 41 |
creator | Lee, Kitae Kim, Sihyun Lee, Jong-Ho Kwon, Daewoong Park, Byung-Gook |
description | We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs. |
doi_str_mv | 10.1109/LED.2020.3000766 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2020_3000766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9110899</ieee_id><sourcerecordid>2427623116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</originalsourceid><addsrcrecordid>eNo9kE9LAzEQR4MoWKt3wUvA89bMJpt2j7V_tFAVpJ6XmJ2VyDapk22l38EPbUrF01ze-w08xq5BDABEebecTQe5yMVACiGGWp-wHhTFKBOFlqesJ4YKMglCn7OLGD-FAKWGqsd-xt60--giD56_4g4pIp-ScT5b-Hprseb3hsgh8WX4RnL-gxtf82f8MJ3bJdY1DRL6zpk2DaSlzniLPDR8jkQBW7QdOZs9mA753GFbZ7Ok2I6vyPgDH4g_4TrQ_pKdNaaNePV3--xtPltNHrPly8NiMl5mNi-hy6xuCtAFCKm1BVOgVuo9VzVAYepDA_1eYJOAXCIgWgUlaIkCrU60lrLPbo-7GwpfW4xd9Rm2lELEKlf5UOcSktBn4khZCjESNtWG3NrQvgJRHZpXqXl1-Ff9NU_KzVFxiPiPlwkelaX8BSMxfcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427623116</pqid></control><display><type>article</type><title>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Kitae ; Kim, Sihyun ; Lee, Jong-Ho ; Kwon, Daewoong ; Park, Byung-Gook</creator><creatorcontrib>Lee, Kitae ; Kim, Sihyun ; Lee, Jong-Ho ; Kwon, Daewoong ; Park, Byung-Gook</creatorcontrib><description>We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.3000766</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CAD ; Capacitors ; Computer aided design ; Computer simulation ; Conduction bands ; Current measurement ; ferroelectric FET ; Ferroelectric materials ; Ferroelectricity ; Field effect transistors ; Floating bodies ; Hafnium zirconium oxide ; Immune system ; Logic gates ; negative differential resistance ; reverse DIBL ; Semiconductor devices ; Tin ; Transistors ; Voltage measurement</subject><ispartof>IEEE electron device letters, 2020-08, Vol.41 (8), p.1197-1200</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</citedby><cites>FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</cites><orcidid>0000-0002-8294-5272 ; 0000-0001-8261-4337 ; 0000-0003-3559-9802 ; 0000-0002-9199-4623 ; 0000-0002-2962-2458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9110899$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Lee, Kitae</creatorcontrib><creatorcontrib>Kim, Sihyun</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><title>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs.</description><subject>CAD</subject><subject>Capacitors</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Conduction bands</subject><subject>Current measurement</subject><subject>ferroelectric FET</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field effect transistors</subject><subject>Floating bodies</subject><subject>Hafnium zirconium oxide</subject><subject>Immune system</subject><subject>Logic gates</subject><subject>negative differential resistance</subject><subject>reverse DIBL</subject><subject>Semiconductor devices</subject><subject>Tin</subject><subject>Transistors</subject><subject>Voltage measurement</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQR4MoWKt3wUvA89bMJpt2j7V_tFAVpJ6XmJ2VyDapk22l38EPbUrF01ze-w08xq5BDABEebecTQe5yMVACiGGWp-wHhTFKBOFlqesJ4YKMglCn7OLGD-FAKWGqsd-xt60--giD56_4g4pIp-ScT5b-Hprseb3hsgh8WX4RnL-gxtf82f8MJ3bJdY1DRL6zpk2DaSlzniLPDR8jkQBW7QdOZs9mA753GFbZ7Ok2I6vyPgDH4g_4TrQ_pKdNaaNePV3--xtPltNHrPly8NiMl5mNi-hy6xuCtAFCKm1BVOgVuo9VzVAYepDA_1eYJOAXCIgWgUlaIkCrU60lrLPbo-7GwpfW4xd9Rm2lELEKlf5UOcSktBn4khZCjESNtWG3NrQvgJRHZpXqXl1-Ff9NU_KzVFxiPiPlwkelaX8BSMxfcs</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Lee, Kitae</creator><creator>Kim, Sihyun</creator><creator>Lee, Jong-Ho</creator><creator>Kwon, Daewoong</creator><creator>Park, Byung-Gook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8294-5272</orcidid><orcidid>https://orcid.org/0000-0001-8261-4337</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0002-9199-4623</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid></search><sort><creationdate>20200801</creationdate><title>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</title><author>Lee, Kitae ; Kim, Sihyun ; Lee, Jong-Ho ; Kwon, Daewoong ; Park, Byung-Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAD</topic><topic>Capacitors</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Conduction bands</topic><topic>Current measurement</topic><topic>ferroelectric FET</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field effect transistors</topic><topic>Floating bodies</topic><topic>Hafnium zirconium oxide</topic><topic>Immune system</topic><topic>Logic gates</topic><topic>negative differential resistance</topic><topic>reverse DIBL</topic><topic>Semiconductor devices</topic><topic>Tin</topic><topic>Transistors</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kitae</creatorcontrib><creatorcontrib>Kim, Sihyun</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kitae</au><au>Kim, Sihyun</au><au>Lee, Jong-Ho</au><au>Kwon, Daewoong</au><au>Park, Byung-Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>41</volume><issue>8</issue><spage>1197</spage><epage>1200</epage><pages>1197-1200</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.3000766</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8294-5272</orcidid><orcidid>https://orcid.org/0000-0001-8261-4337</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0002-9199-4623</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2020-08, Vol.41 (8), p.1197-1200 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LED_2020_3000766 |
source | IEEE Electronic Library (IEL) Journals |
subjects | CAD Capacitors Computer aided design Computer simulation Conduction bands Current measurement ferroelectric FET Ferroelectric materials Ferroelectricity Field effect transistors Floating bodies Hafnium zirconium oxide Immune system Logic gates negative differential resistance reverse DIBL Semiconductor devices Tin Transistors Voltage measurement |
title | Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20on%20Reverse%20Drain-Induced%20Barrier%20Lowering%20and%20Negative%20Differential%20Resistance%20of%20Ferroelectric-Gate%20Field-Effect%20Transistor%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Lee,%20Kitae&rft.date=2020-08-01&rft.volume=41&rft.issue=8&rft.spage=1197&rft.epage=1200&rft.pages=1197-1200&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.3000766&rft_dat=%3Cproquest_cross%3E2427623116%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427623116&rft_id=info:pmid/&rft_ieee_id=9110899&rfr_iscdi=true |