Loading…

Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory

We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. T...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2020-08, Vol.41 (8), p.1197-1200
Main Authors: Lee, Kitae, Kim, Sihyun, Lee, Jong-Ho, Kwon, Daewoong, Park, Byung-Gook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633
cites cdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633
container_end_page 1200
container_issue 8
container_start_page 1197
container_title IEEE electron device letters
container_volume 41
creator Lee, Kitae
Kim, Sihyun
Lee, Jong-Ho
Kwon, Daewoong
Park, Byung-Gook
description We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs.
doi_str_mv 10.1109/LED.2020.3000766
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2020_3000766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9110899</ieee_id><sourcerecordid>2427623116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</originalsourceid><addsrcrecordid>eNo9kE9LAzEQR4MoWKt3wUvA89bMJpt2j7V_tFAVpJ6XmJ2VyDapk22l38EPbUrF01ze-w08xq5BDABEebecTQe5yMVACiGGWp-wHhTFKBOFlqesJ4YKMglCn7OLGD-FAKWGqsd-xt60--giD56_4g4pIp-ScT5b-Hprseb3hsgh8WX4RnL-gxtf82f8MJ3bJdY1DRL6zpk2DaSlzniLPDR8jkQBW7QdOZs9mA753GFbZ7Ok2I6vyPgDH4g_4TrQ_pKdNaaNePV3--xtPltNHrPly8NiMl5mNi-hy6xuCtAFCKm1BVOgVuo9VzVAYepDA_1eYJOAXCIgWgUlaIkCrU60lrLPbo-7GwpfW4xd9Rm2lELEKlf5UOcSktBn4khZCjESNtWG3NrQvgJRHZpXqXl1-Ff9NU_KzVFxiPiPlwkelaX8BSMxfcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427623116</pqid></control><display><type>article</type><title>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Kitae ; Kim, Sihyun ; Lee, Jong-Ho ; Kwon, Daewoong ; Park, Byung-Gook</creator><creatorcontrib>Lee, Kitae ; Kim, Sihyun ; Lee, Jong-Ho ; Kwon, Daewoong ; Park, Byung-Gook</creatorcontrib><description>We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.3000766</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CAD ; Capacitors ; Computer aided design ; Computer simulation ; Conduction bands ; Current measurement ; ferroelectric FET ; Ferroelectric materials ; Ferroelectricity ; Field effect transistors ; Floating bodies ; Hafnium zirconium oxide ; Immune system ; Logic gates ; negative differential resistance ; reverse DIBL ; Semiconductor devices ; Tin ; Transistors ; Voltage measurement</subject><ispartof>IEEE electron device letters, 2020-08, Vol.41 (8), p.1197-1200</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</citedby><cites>FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</cites><orcidid>0000-0002-8294-5272 ; 0000-0001-8261-4337 ; 0000-0003-3559-9802 ; 0000-0002-9199-4623 ; 0000-0002-2962-2458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9110899$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Lee, Kitae</creatorcontrib><creatorcontrib>Kim, Sihyun</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><title>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs.</description><subject>CAD</subject><subject>Capacitors</subject><subject>Computer aided design</subject><subject>Computer simulation</subject><subject>Conduction bands</subject><subject>Current measurement</subject><subject>ferroelectric FET</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field effect transistors</subject><subject>Floating bodies</subject><subject>Hafnium zirconium oxide</subject><subject>Immune system</subject><subject>Logic gates</subject><subject>negative differential resistance</subject><subject>reverse DIBL</subject><subject>Semiconductor devices</subject><subject>Tin</subject><subject>Transistors</subject><subject>Voltage measurement</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQR4MoWKt3wUvA89bMJpt2j7V_tFAVpJ6XmJ2VyDapk22l38EPbUrF01ze-w08xq5BDABEebecTQe5yMVACiGGWp-wHhTFKBOFlqesJ4YKMglCn7OLGD-FAKWGqsd-xt60--giD56_4g4pIp-ScT5b-Hprseb3hsgh8WX4RnL-gxtf82f8MJ3bJdY1DRL6zpk2DaSlzniLPDR8jkQBW7QdOZs9mA753GFbZ7Ok2I6vyPgDH4g_4TrQ_pKdNaaNePV3--xtPltNHrPly8NiMl5mNi-hy6xuCtAFCKm1BVOgVuo9VzVAYepDA_1eYJOAXCIgWgUlaIkCrU60lrLPbo-7GwpfW4xd9Rm2lELEKlf5UOcSktBn4khZCjESNtWG3NrQvgJRHZpXqXl1-Ff9NU_KzVFxiPiPlwkelaX8BSMxfcs</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Lee, Kitae</creator><creator>Kim, Sihyun</creator><creator>Lee, Jong-Ho</creator><creator>Kwon, Daewoong</creator><creator>Park, Byung-Gook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8294-5272</orcidid><orcidid>https://orcid.org/0000-0001-8261-4337</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0002-9199-4623</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid></search><sort><creationdate>20200801</creationdate><title>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</title><author>Lee, Kitae ; Kim, Sihyun ; Lee, Jong-Ho ; Kwon, Daewoong ; Park, Byung-Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CAD</topic><topic>Capacitors</topic><topic>Computer aided design</topic><topic>Computer simulation</topic><topic>Conduction bands</topic><topic>Current measurement</topic><topic>ferroelectric FET</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field effect transistors</topic><topic>Floating bodies</topic><topic>Hafnium zirconium oxide</topic><topic>Immune system</topic><topic>Logic gates</topic><topic>negative differential resistance</topic><topic>reverse DIBL</topic><topic>Semiconductor devices</topic><topic>Tin</topic><topic>Transistors</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kitae</creatorcontrib><creatorcontrib>Kim, Sihyun</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><creatorcontrib>Kwon, Daewoong</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kitae</au><au>Kim, Sihyun</au><au>Lee, Jong-Ho</au><au>Kwon, Daewoong</au><au>Park, Byung-Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>41</volume><issue>8</issue><spage>1197</spage><epage>1200</epage><pages>1197-1200</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We demonstrate novel analysis on electrical characteristics of ferroelectric-gate field effect transistor (FeFET), especially reverse DIBL (RDIBL) and negative differential resistance (NDR) phenomena through measurements of fabricated FeFETs and technology computer-aided design (TCAD) simulations. The FeFETs are embodied by extracting the ferroelectric properties using metal-ferroelectric-metal (MFM) capacitors and applying it to the gate stack of n-type FeFETs. Then, the device and the model parameters of the FeFETs are calibrated by matching TCAD simulation results to measured electrical characteristics. By the TCAD simulations which reflect the Preisach model considering multi-domain ferroelectric characteristics, it is revealed that RDIBL and NDR result from the local conduction band energy rising at the drain-side with drain voltage increasing. Furthermore, it is found that gate-induced drain leakage (GIDL) accelerates RDIBL with the help of the injection of the generated holes by GIDL in the floating body of FeFETs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.3000766</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8294-5272</orcidid><orcidid>https://orcid.org/0000-0001-8261-4337</orcidid><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0002-9199-4623</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2020-08, Vol.41 (8), p.1197-1200
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2020_3000766
source IEEE Electronic Library (IEL) Journals
subjects CAD
Capacitors
Computer aided design
Computer simulation
Conduction bands
Current measurement
ferroelectric FET
Ferroelectric materials
Ferroelectricity
Field effect transistors
Floating bodies
Hafnium zirconium oxide
Immune system
Logic gates
negative differential resistance
reverse DIBL
Semiconductor devices
Tin
Transistors
Voltage measurement
title Analysis on Reverse Drain-Induced Barrier Lowering and Negative Differential Resistance of Ferroelectric-Gate Field-Effect Transistor Memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20on%20Reverse%20Drain-Induced%20Barrier%20Lowering%20and%20Negative%20Differential%20Resistance%20of%20Ferroelectric-Gate%20Field-Effect%20Transistor%20Memory&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Lee,%20Kitae&rft.date=2020-08-01&rft.volume=41&rft.issue=8&rft.spage=1197&rft.epage=1200&rft.pages=1197-1200&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.3000766&rft_dat=%3Cproquest_cross%3E2427623116%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c6f516510366c1a5e644b24d115ad20206b5ef65123e1eec419163e0ec61a5633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427623116&rft_id=info:pmid/&rft_ieee_id=9110899&rfr_iscdi=true