Loading…
Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor
We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobilit...
Saved in:
Published in: | IEEE electron device letters 2020-11, Vol.41 (11), p.1621-1624 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current ( {I}_{{\textit {ON}}} >1.1 mA/ \mu \text{m} at {L}_{G} < 10 nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2020.3026053 |