Loading…
Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor
We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobilit...
Saved in:
Published in: | IEEE electron device letters 2020-11, Vol.41 (11), p.1621-1624 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733 |
container_end_page | 1624 |
container_issue | 11 |
container_start_page | 1621 |
container_title | IEEE electron device letters |
container_volume | 41 |
creator | Kim, Sung-Ho Park, Jong Yul Chang, Jiwon Kim, Kyung Rok |
description | We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current ( {I}_{{\textit {ON}}} >1.1 mA/ \mu \text{m} at {L}_{G} < 10 nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT. |
doi_str_mv | 10.1109/LED.2020.3026053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2020_3026053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204733</ieee_id><sourcerecordid>2454470631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUvA89ZJMtntHrW2VqgotAqeQppNasq6W5Ptof--KS0yhxke782Dj5BbBgPGoHyYjZ8HHDgMBPAcpDgjPSblMAOZi3PSgwJZJhjkl-QqxjUAQyywR77nRte-WVHdVPRLB6873zb0I9jKm8MZqWsDnfvam6RPfJM96WgrOvWrHzqurelC0t_aZXJ0O7oIuok-dm24JhdO19HenHaffE7Gi9E0m72_vI4eZ5nhiF1Wci04A2GdRDRS5LJKsxxiUWJpnBauwhytNdpIx0oUbsltVbmC6Rx4IUSf3B__bkL7t7WxU-t2G5pUqTimnwXkgiUXHF0mtDEG69Qm-F8ddoqBOgBUCaA6AFQngClyd4x4a-2_veSAqVXsATXRa8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454470631</pqid></control><display><type>article</type><title>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kim, Sung-Ho ; Park, Jong Yul ; Chang, Jiwon ; Kim, Kyung Rok</creator><creatorcontrib>Kim, Sung-Ho ; Park, Jong Yul ; Chang, Jiwon ; Kim, Kyung Rok</creatorcontrib><description><![CDATA[We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{{\textit {ON}}} >1.1 </tex-math></inline-formula> mA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">{L}_{G} < 10 </tex-math></inline-formula> nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.3026053</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>effective mobility ; Electrons ; FinFETs ; FinHEMT ; HEMTs ; High electron mobility transistors ; Ions ; Logic gates ; MODFETs ; quantum well ; Quantum wells ; scalability ; Semiconductor devices ; Silicon ; Silicon germanium ; Surface roughness ; surface roughness scattering ; Transistors</subject><ispartof>IEEE electron device letters, 2020-11, Vol.41 (11), p.1621-1624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733</cites><orcidid>0000-0003-0781-2522 ; 0000-0003-1310-6819 ; 0000-0001-9995-6464 ; 0000-0003-0124-5520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Kim, Sung-Ho</creatorcontrib><creatorcontrib>Park, Jong Yul</creatorcontrib><creatorcontrib>Chang, Jiwon</creatorcontrib><creatorcontrib>Kim, Kyung Rok</creatorcontrib><title>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{{\textit {ON}}} >1.1 </tex-math></inline-formula> mA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">{L}_{G} < 10 </tex-math></inline-formula> nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT.]]></description><subject>effective mobility</subject><subject>Electrons</subject><subject>FinFETs</subject><subject>FinHEMT</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Ions</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>quantum well</subject><subject>Quantum wells</subject><subject>scalability</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Silicon germanium</subject><subject>Surface roughness</subject><subject>surface roughness scattering</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKt3wUvA89ZJMtntHrW2VqgotAqeQppNasq6W5Ptof--KS0yhxke782Dj5BbBgPGoHyYjZ8HHDgMBPAcpDgjPSblMAOZi3PSgwJZJhjkl-QqxjUAQyywR77nRte-WVHdVPRLB6873zb0I9jKm8MZqWsDnfvam6RPfJM96WgrOvWrHzqurelC0t_aZXJ0O7oIuok-dm24JhdO19HenHaffE7Gi9E0m72_vI4eZ5nhiF1Wci04A2GdRDRS5LJKsxxiUWJpnBauwhytNdpIx0oUbsltVbmC6Rx4IUSf3B__bkL7t7WxU-t2G5pUqTimnwXkgiUXHF0mtDEG69Qm-F8ddoqBOgBUCaA6AFQngClyd4x4a-2_veSAqVXsATXRa8U</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kim, Sung-Ho</creator><creator>Park, Jong Yul</creator><creator>Chang, Jiwon</creator><creator>Kim, Kyung Rok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0781-2522</orcidid><orcidid>https://orcid.org/0000-0003-1310-6819</orcidid><orcidid>https://orcid.org/0000-0001-9995-6464</orcidid><orcidid>https://orcid.org/0000-0003-0124-5520</orcidid></search><sort><creationdate>20201101</creationdate><title>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</title><author>Kim, Sung-Ho ; Park, Jong Yul ; Chang, Jiwon ; Kim, Kyung Rok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>effective mobility</topic><topic>Electrons</topic><topic>FinFETs</topic><topic>FinHEMT</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Ions</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>quantum well</topic><topic>Quantum wells</topic><topic>scalability</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Silicon germanium</topic><topic>Surface roughness</topic><topic>surface roughness scattering</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sung-Ho</creatorcontrib><creatorcontrib>Park, Jong Yul</creatorcontrib><creatorcontrib>Chang, Jiwon</creatorcontrib><creatorcontrib>Kim, Kyung Rok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sung-Ho</au><au>Park, Jong Yul</au><au>Chang, Jiwon</au><au>Kim, Kyung Rok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>41</volume><issue>11</issue><spage>1621</spage><epage>1624</epage><pages>1621-1624</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{{\textit {ON}}} >1.1 </tex-math></inline-formula> mA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">{L}_{G} < 10 </tex-math></inline-formula> nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.3026053</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0781-2522</orcidid><orcidid>https://orcid.org/0000-0003-1310-6819</orcidid><orcidid>https://orcid.org/0000-0001-9995-6464</orcidid><orcidid>https://orcid.org/0000-0003-0124-5520</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2020-11, Vol.41 (11), p.1621-1624 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LED_2020_3026053 |
source | IEEE Electronic Library (IEL) Journals |
subjects | effective mobility Electrons FinFETs FinHEMT HEMTs High electron mobility transistors Ions Logic gates MODFETs quantum well Quantum wells scalability Semiconductor devices Silicon Silicon germanium Surface roughness surface roughness scattering Transistors |
title | Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20and%20Variation%20Predictions%20for%20Silicon%20Fin-Based%20High%20Electron%20Mobility%20Transistor&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Kim,%20Sung-Ho&rft.date=2020-11-01&rft.volume=41&rft.issue=11&rft.spage=1621&rft.epage=1624&rft.pages=1621-1624&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.3026053&rft_dat=%3Cproquest_cross%3E2454470631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454470631&rft_id=info:pmid/&rft_ieee_id=9204733&rfr_iscdi=true |