Loading…

Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor

We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobilit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2020-11, Vol.41 (11), p.1621-1624
Main Authors: Kim, Sung-Ho, Park, Jong Yul, Chang, Jiwon, Kim, Kyung Rok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733
container_end_page 1624
container_issue 11
container_start_page 1621
container_title IEEE electron device letters
container_volume 41
creator Kim, Sung-Ho
Park, Jong Yul
Chang, Jiwon
Kim, Kyung Rok
description We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current ( {I}_{{\textit {ON}}} >1.1 mA/ \mu \text{m} at {L}_{G} < 10 nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT.
doi_str_mv 10.1109/LED.2020.3026053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2020_3026053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204733</ieee_id><sourcerecordid>2454470631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUvA89ZJMtntHrW2VqgotAqeQppNasq6W5Ptof--KS0yhxke782Dj5BbBgPGoHyYjZ8HHDgMBPAcpDgjPSblMAOZi3PSgwJZJhjkl-QqxjUAQyywR77nRte-WVHdVPRLB6873zb0I9jKm8MZqWsDnfvam6RPfJM96WgrOvWrHzqurelC0t_aZXJ0O7oIuok-dm24JhdO19HenHaffE7Gi9E0m72_vI4eZ5nhiF1Wci04A2GdRDRS5LJKsxxiUWJpnBauwhytNdpIx0oUbsltVbmC6Rx4IUSf3B__bkL7t7WxU-t2G5pUqTimnwXkgiUXHF0mtDEG69Qm-F8ddoqBOgBUCaA6AFQngClyd4x4a-2_veSAqVXsATXRa8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454470631</pqid></control><display><type>article</type><title>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kim, Sung-Ho ; Park, Jong Yul ; Chang, Jiwon ; Kim, Kyung Rok</creator><creatorcontrib>Kim, Sung-Ho ; Park, Jong Yul ; Chang, Jiwon ; Kim, Kyung Rok</creatorcontrib><description><![CDATA[We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{{\textit {ON}}} >1.1 </tex-math></inline-formula> mA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">{L}_{G} < 10 </tex-math></inline-formula> nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT.]]></description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2020.3026053</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>effective mobility ; Electrons ; FinFETs ; FinHEMT ; HEMTs ; High electron mobility transistors ; Ions ; Logic gates ; MODFETs ; quantum well ; Quantum wells ; scalability ; Semiconductor devices ; Silicon ; Silicon germanium ; Surface roughness ; surface roughness scattering ; Transistors</subject><ispartof>IEEE electron device letters, 2020-11, Vol.41 (11), p.1621-1624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733</cites><orcidid>0000-0003-0781-2522 ; 0000-0003-1310-6819 ; 0000-0001-9995-6464 ; 0000-0003-0124-5520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Kim, Sung-Ho</creatorcontrib><creatorcontrib>Park, Jong Yul</creatorcontrib><creatorcontrib>Chang, Jiwon</creatorcontrib><creatorcontrib>Kim, Kyung Rok</creatorcontrib><title>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{{\textit {ON}}} >1.1 </tex-math></inline-formula> mA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">{L}_{G} < 10 </tex-math></inline-formula> nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT.]]></description><subject>effective mobility</subject><subject>Electrons</subject><subject>FinFETs</subject><subject>FinHEMT</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Ions</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>quantum well</subject><subject>Quantum wells</subject><subject>scalability</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Silicon germanium</subject><subject>Surface roughness</subject><subject>surface roughness scattering</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKt3wUvA89ZJMtntHrW2VqgotAqeQppNasq6W5Ptof--KS0yhxke782Dj5BbBgPGoHyYjZ8HHDgMBPAcpDgjPSblMAOZi3PSgwJZJhjkl-QqxjUAQyywR77nRte-WVHdVPRLB6873zb0I9jKm8MZqWsDnfvam6RPfJM96WgrOvWrHzqurelC0t_aZXJ0O7oIuok-dm24JhdO19HenHaffE7Gi9E0m72_vI4eZ5nhiF1Wci04A2GdRDRS5LJKsxxiUWJpnBauwhytNdpIx0oUbsltVbmC6Rx4IUSf3B__bkL7t7WxU-t2G5pUqTimnwXkgiUXHF0mtDEG69Qm-F8ddoqBOgBUCaA6AFQngClyd4x4a-2_veSAqVXsATXRa8U</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kim, Sung-Ho</creator><creator>Park, Jong Yul</creator><creator>Chang, Jiwon</creator><creator>Kim, Kyung Rok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0781-2522</orcidid><orcidid>https://orcid.org/0000-0003-1310-6819</orcidid><orcidid>https://orcid.org/0000-0001-9995-6464</orcidid><orcidid>https://orcid.org/0000-0003-0124-5520</orcidid></search><sort><creationdate>20201101</creationdate><title>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</title><author>Kim, Sung-Ho ; Park, Jong Yul ; Chang, Jiwon ; Kim, Kyung Rok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>effective mobility</topic><topic>Electrons</topic><topic>FinFETs</topic><topic>FinHEMT</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Ions</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>quantum well</topic><topic>Quantum wells</topic><topic>scalability</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Silicon germanium</topic><topic>Surface roughness</topic><topic>surface roughness scattering</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sung-Ho</creatorcontrib><creatorcontrib>Park, Jong Yul</creatorcontrib><creatorcontrib>Chang, Jiwon</creatorcontrib><creatorcontrib>Kim, Kyung Rok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sung-Ho</au><au>Park, Jong Yul</au><au>Chang, Jiwon</au><au>Kim, Kyung Rok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>41</volume><issue>11</issue><spage>1621</spage><epage>1624</epage><pages>1621-1624</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract><![CDATA[We present scaling and variation predictions for a strained-silicon (s-Si) fin-based high electron mobility transistor (FinHEMT) with well-tempered, short-channel characteristics. Using device simulation calibrated with experimental data, we predict that the FinHEMT can achieve high electron mobility (~1100 cm 2 /Vs) and enhance effective mobility (up to 2x) by suppressing the surface roughness scattering effect in the Si quantum well (QW) channel. Moreover, excellent scalability of the FinHEMT ON-current (<inline-formula> <tex-math notation="LaTeX">{I}_{{\textit {ON}}} >1.1 </tex-math></inline-formula> mA/<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">{L}_{G} < 10 </tex-math></inline-formula> nm) is predicted as the high channel mobility can reduce the underlap series resistance in the scaled device. Owing to this low underlap resistivity, geometrical variations of fin width and underlap length have little effect on the ON-current in FinHEMT.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2020.3026053</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0781-2522</orcidid><orcidid>https://orcid.org/0000-0003-1310-6819</orcidid><orcidid>https://orcid.org/0000-0001-9995-6464</orcidid><orcidid>https://orcid.org/0000-0003-0124-5520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2020-11, Vol.41 (11), p.1621-1624
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2020_3026053
source IEEE Electronic Library (IEL) Journals
subjects effective mobility
Electrons
FinFETs
FinHEMT
HEMTs
High electron mobility transistors
Ions
Logic gates
MODFETs
quantum well
Quantum wells
scalability
Semiconductor devices
Silicon
Silicon germanium
Surface roughness
surface roughness scattering
Transistors
title Scaling and Variation Predictions for Silicon Fin-Based High Electron Mobility Transistor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20and%20Variation%20Predictions%20for%20Silicon%20Fin-Based%20High%20Electron%20Mobility%20Transistor&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Kim,%20Sung-Ho&rft.date=2020-11-01&rft.volume=41&rft.issue=11&rft.spage=1621&rft.epage=1624&rft.pages=1621-1624&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2020.3026053&rft_dat=%3Cproquest_cross%3E2454470631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-92a32103ef544c5365d5d5b847949cfa3fd464eecac5f1943fb2eddf71a602733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454470631&rft_id=info:pmid/&rft_ieee_id=9204733&rfr_iscdi=true