Loading…
Lifetime Prediction of Ultraviolet Light-Emitting Diodes Using a Long Short-Term Memory Recurrent Neural Network
Ultraviolet light-emitting diodes (UV LEDs) play an important role in inactivating novel coronavirus pneumonia, but the lack of rapid lifetime prediction can easily cause untimely failure detection, long product development cycles, and high costs. This study predicts the lifetime of UV LEDs based on...
Saved in:
Published in: | IEEE electron device letters 2020-12, Vol.41 (12), p.1817-1820 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultraviolet light-emitting diodes (UV LEDs) play an important role in inactivating novel coronavirus pneumonia, but the lack of rapid lifetime prediction can easily cause untimely failure detection, long product development cycles, and high costs. This study predicts the lifetime of UV LEDs based on the long short-term memory (LSTM) recurrent neural network (RNN). First, the equipment setup was designed to conduct an aging test to obtain a predicted length of life for the UV LED samples using a Weibull distribution. Next, LSTM RNN was employed to predict the lifetime of the UV LEDs based on the radiation power degradation. The results were then compared with those from nonlinear least squares (NLS) regression recommended by the IESNA TM-21 industry standard. Finally, the robustness of the two methods was analyzed by changing the starting times of the predictions. The results showed that the LSTM RNN proposed in this letter reveals not only a 29.7% lower lifetime prediction error compared with the NLS regression, but also a more stable robustness. Thus, the LSTM RNN method is found to be more accurate and more robust in predicting the lifetime of UV LEDs. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2020.3034567 |