Loading…
High-Performance Hexagonal Tellurium Thin-Film Transistor Using Tellurium Oxide as a Crystallization Retarder
This study investigates the effect of oxygen plasma (PO) on the crystalline structure of tellurium (Te) thin films during reactive sputtering. Introduction of oxygen radicals suppresses uncontrolled rapid growth of hexagonal Te crystals, amorphizing the deposited Te thin film. This amorphous phase c...
Saved in:
Published in: | IEEE electron device letters 2023-02, Vol.44 (2), p.269-272 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-bd596ef9fb8d89af4e36deb6f9577f79c772518ff2b293889858d73c99fedc613 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-bd596ef9fb8d89af4e36deb6f9577f79c772518ff2b293889858d73c99fedc613 |
container_end_page | 272 |
container_issue | 2 |
container_start_page | 269 |
container_title | IEEE electron device letters |
container_volume | 44 |
creator | Kim, Taikyu Choi, Cheol Hee Kim, Se Eun Kim, Jeong-Kyu Jang, Jaeman Choi, SeungChan Noh, Jiyong Park, Kwon-Shik Kim, Jeomjae Yoon, SooYoung Jeong, Jae Kyeong |
description | This study investigates the effect of oxygen plasma (PO) on the crystalline structure of tellurium (Te) thin films during reactive sputtering. Introduction of oxygen radicals suppresses uncontrolled rapid growth of hexagonal Te crystals, amorphizing the deposited Te thin film. This amorphous phase changes to the hexagonal phase upon alumina encapsulation. A 4-nm-thick Te transistor with a PO of 7% exhibits outstanding device performances, with a field-effect mobility up to 40.8 cm2V−1s−1 and an on/off current modulation ratio up to 1.1\times 10^{{6}} . These behaviors originate from alleviated random polycrystallinity in the corresponding thin film. However, when PO increases above 7%, amorphization progresses further, and remnant oxygen ions hamper the growth of the hexagonal phase in Te thin film. Consequently, hole transport is degraded. This study suggests tellurium oxide as a crystallization retarder for high-performance p-channel Te transistors. |
doi_str_mv | 10.1109/LED.2022.3230705 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2022_3230705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9992200</ieee_id><sourcerecordid>2770776962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bd596ef9fb8d89af4e36deb6f9577f79c772518ff2b293889858d73c99fedc613</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsFb3gpsB16nzSOaxlNpaoVCRdj1MkjvtlDSpMwm0_npTWsTVPYvvHLgfQo-UjCgl-mU-eRsxwtiIM04kya7QgGaZSkgm-DUaEJnShFMibtFdjFtCaJrKdIB2M7_eJJ8QXBN2ti4Az-Bg101tK7yEquqC73Z4ufF1MvVVn4Kto49tE_Aq-nr9D1ocfAnYRmzxOBxja6vK_9jWNzX-gtaGEsI9unG2ivBwuUO0mk6W41kyX7x_jF_nScE0bZO8zLQAp12uSqWtS4GLEnLhdCalk7qQkmVUOcdyprlSWmWqlLzQ2kFZCMqH6Pm8uw_NdwexNdumC_1P0TApiZRCC9ZT5EwVoYkxgDP74Hc2HA0l5iTV9FLNSaq5SO0rT-eKB4A_XGvNGCH8F4UfdDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770776962</pqid></control><display><type>article</type><title>High-Performance Hexagonal Tellurium Thin-Film Transistor Using Tellurium Oxide as a Crystallization Retarder</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kim, Taikyu ; Choi, Cheol Hee ; Kim, Se Eun ; Kim, Jeong-Kyu ; Jang, Jaeman ; Choi, SeungChan ; Noh, Jiyong ; Park, Kwon-Shik ; Kim, Jeomjae ; Yoon, SooYoung ; Jeong, Jae Kyeong</creator><creatorcontrib>Kim, Taikyu ; Choi, Cheol Hee ; Kim, Se Eun ; Kim, Jeong-Kyu ; Jang, Jaeman ; Choi, SeungChan ; Noh, Jiyong ; Park, Kwon-Shik ; Kim, Jeomjae ; Yoon, SooYoung ; Jeong, Jae Kyeong</creatorcontrib><description>This study investigates the effect of oxygen plasma (PO) on the crystalline structure of tellurium (Te) thin films during reactive sputtering. Introduction of oxygen radicals suppresses uncontrolled rapid growth of hexagonal Te crystals, amorphizing the deposited Te thin film. This amorphous phase changes to the hexagonal phase upon alumina encapsulation. A 4-nm-thick Te transistor with a PO of 7% exhibits outstanding device performances, with a field-effect mobility up to 40.8 cm2V−1s−1 and an on/off current modulation ratio up to <inline-formula> <tex-math notation="LaTeX">1.1\times 10^{{6}} </tex-math></inline-formula>. These behaviors originate from alleviated random polycrystallinity in the corresponding thin film. However, when PO increases above 7%, amorphization progresses further, and remnant oxygen ions hamper the growth of the hexagonal phase in Te thin film. Consequently, hole transport is degraded. This study suggests tellurium oxide as a crystallization retarder for high-performance p-channel Te transistors.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2022.3230705</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphization ; back-end-of-line-compatible transistor ; Crystallization ; Crystals ; Current modulation ; Hexagonal phase ; hexagonal tellurium ; Inorganic p-type semiconductor ; Iron ; Oxygen ions ; Oxygen plasma ; Performance evaluation ; Plasma temperature ; Semiconductor devices ; Sputtering ; Tellurium ; Thin film transistors ; thin-film transistor ; Transistors</subject><ispartof>IEEE electron device letters, 2023-02, Vol.44 (2), p.269-272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bd596ef9fb8d89af4e36deb6f9577f79c772518ff2b293889858d73c99fedc613</citedby><cites>FETCH-LOGICAL-c291t-bd596ef9fb8d89af4e36deb6f9577f79c772518ff2b293889858d73c99fedc613</cites><orcidid>0000-0001-6676-1337 ; 0000-0003-3857-1039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9992200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kim, Taikyu</creatorcontrib><creatorcontrib>Choi, Cheol Hee</creatorcontrib><creatorcontrib>Kim, Se Eun</creatorcontrib><creatorcontrib>Kim, Jeong-Kyu</creatorcontrib><creatorcontrib>Jang, Jaeman</creatorcontrib><creatorcontrib>Choi, SeungChan</creatorcontrib><creatorcontrib>Noh, Jiyong</creatorcontrib><creatorcontrib>Park, Kwon-Shik</creatorcontrib><creatorcontrib>Kim, Jeomjae</creatorcontrib><creatorcontrib>Yoon, SooYoung</creatorcontrib><creatorcontrib>Jeong, Jae Kyeong</creatorcontrib><title>High-Performance Hexagonal Tellurium Thin-Film Transistor Using Tellurium Oxide as a Crystallization Retarder</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>This study investigates the effect of oxygen plasma (PO) on the crystalline structure of tellurium (Te) thin films during reactive sputtering. Introduction of oxygen radicals suppresses uncontrolled rapid growth of hexagonal Te crystals, amorphizing the deposited Te thin film. This amorphous phase changes to the hexagonal phase upon alumina encapsulation. A 4-nm-thick Te transistor with a PO of 7% exhibits outstanding device performances, with a field-effect mobility up to 40.8 cm2V−1s−1 and an on/off current modulation ratio up to <inline-formula> <tex-math notation="LaTeX">1.1\times 10^{{6}} </tex-math></inline-formula>. These behaviors originate from alleviated random polycrystallinity in the corresponding thin film. However, when PO increases above 7%, amorphization progresses further, and remnant oxygen ions hamper the growth of the hexagonal phase in Te thin film. Consequently, hole transport is degraded. This study suggests tellurium oxide as a crystallization retarder for high-performance p-channel Te transistors.</description><subject>Amorphization</subject><subject>back-end-of-line-compatible transistor</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Current modulation</subject><subject>Hexagonal phase</subject><subject>hexagonal tellurium</subject><subject>Inorganic p-type semiconductor</subject><subject>Iron</subject><subject>Oxygen ions</subject><subject>Oxygen plasma</subject><subject>Performance evaluation</subject><subject>Plasma temperature</subject><subject>Semiconductor devices</subject><subject>Sputtering</subject><subject>Tellurium</subject><subject>Thin film transistors</subject><subject>thin-film transistor</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRsFb3gpsB16nzSOaxlNpaoVCRdj1MkjvtlDSpMwm0_npTWsTVPYvvHLgfQo-UjCgl-mU-eRsxwtiIM04kya7QgGaZSkgm-DUaEJnShFMibtFdjFtCaJrKdIB2M7_eJJ8QXBN2ti4Az-Bg101tK7yEquqC73Z4ufF1MvVVn4Kto49tE_Aq-nr9D1ocfAnYRmzxOBxja6vK_9jWNzX-gtaGEsI9unG2ivBwuUO0mk6W41kyX7x_jF_nScE0bZO8zLQAp12uSqWtS4GLEnLhdCalk7qQkmVUOcdyprlSWmWqlLzQ2kFZCMqH6Pm8uw_NdwexNdumC_1P0TApiZRCC9ZT5EwVoYkxgDP74Hc2HA0l5iTV9FLNSaq5SO0rT-eKB4A_XGvNGCH8F4UfdDs</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kim, Taikyu</creator><creator>Choi, Cheol Hee</creator><creator>Kim, Se Eun</creator><creator>Kim, Jeong-Kyu</creator><creator>Jang, Jaeman</creator><creator>Choi, SeungChan</creator><creator>Noh, Jiyong</creator><creator>Park, Kwon-Shik</creator><creator>Kim, Jeomjae</creator><creator>Yoon, SooYoung</creator><creator>Jeong, Jae Kyeong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6676-1337</orcidid><orcidid>https://orcid.org/0000-0003-3857-1039</orcidid></search><sort><creationdate>20230201</creationdate><title>High-Performance Hexagonal Tellurium Thin-Film Transistor Using Tellurium Oxide as a Crystallization Retarder</title><author>Kim, Taikyu ; Choi, Cheol Hee ; Kim, Se Eun ; Kim, Jeong-Kyu ; Jang, Jaeman ; Choi, SeungChan ; Noh, Jiyong ; Park, Kwon-Shik ; Kim, Jeomjae ; Yoon, SooYoung ; Jeong, Jae Kyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bd596ef9fb8d89af4e36deb6f9577f79c772518ff2b293889858d73c99fedc613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphization</topic><topic>back-end-of-line-compatible transistor</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Current modulation</topic><topic>Hexagonal phase</topic><topic>hexagonal tellurium</topic><topic>Inorganic p-type semiconductor</topic><topic>Iron</topic><topic>Oxygen ions</topic><topic>Oxygen plasma</topic><topic>Performance evaluation</topic><topic>Plasma temperature</topic><topic>Semiconductor devices</topic><topic>Sputtering</topic><topic>Tellurium</topic><topic>Thin film transistors</topic><topic>thin-film transistor</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taikyu</creatorcontrib><creatorcontrib>Choi, Cheol Hee</creatorcontrib><creatorcontrib>Kim, Se Eun</creatorcontrib><creatorcontrib>Kim, Jeong-Kyu</creatorcontrib><creatorcontrib>Jang, Jaeman</creatorcontrib><creatorcontrib>Choi, SeungChan</creatorcontrib><creatorcontrib>Noh, Jiyong</creatorcontrib><creatorcontrib>Park, Kwon-Shik</creatorcontrib><creatorcontrib>Kim, Jeomjae</creatorcontrib><creatorcontrib>Yoon, SooYoung</creatorcontrib><creatorcontrib>Jeong, Jae Kyeong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taikyu</au><au>Choi, Cheol Hee</au><au>Kim, Se Eun</au><au>Kim, Jeong-Kyu</au><au>Jang, Jaeman</au><au>Choi, SeungChan</au><au>Noh, Jiyong</au><au>Park, Kwon-Shik</au><au>Kim, Jeomjae</au><au>Yoon, SooYoung</au><au>Jeong, Jae Kyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Hexagonal Tellurium Thin-Film Transistor Using Tellurium Oxide as a Crystallization Retarder</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>44</volume><issue>2</issue><spage>269</spage><epage>272</epage><pages>269-272</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>This study investigates the effect of oxygen plasma (PO) on the crystalline structure of tellurium (Te) thin films during reactive sputtering. Introduction of oxygen radicals suppresses uncontrolled rapid growth of hexagonal Te crystals, amorphizing the deposited Te thin film. This amorphous phase changes to the hexagonal phase upon alumina encapsulation. A 4-nm-thick Te transistor with a PO of 7% exhibits outstanding device performances, with a field-effect mobility up to 40.8 cm2V−1s−1 and an on/off current modulation ratio up to <inline-formula> <tex-math notation="LaTeX">1.1\times 10^{{6}} </tex-math></inline-formula>. These behaviors originate from alleviated random polycrystallinity in the corresponding thin film. However, when PO increases above 7%, amorphization progresses further, and remnant oxygen ions hamper the growth of the hexagonal phase in Te thin film. Consequently, hole transport is degraded. This study suggests tellurium oxide as a crystallization retarder for high-performance p-channel Te transistors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2022.3230705</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6676-1337</orcidid><orcidid>https://orcid.org/0000-0003-3857-1039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2023-02, Vol.44 (2), p.269-272 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LED_2022_3230705 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Amorphization back-end-of-line-compatible transistor Crystallization Crystals Current modulation Hexagonal phase hexagonal tellurium Inorganic p-type semiconductor Iron Oxygen ions Oxygen plasma Performance evaluation Plasma temperature Semiconductor devices Sputtering Tellurium Thin film transistors thin-film transistor Transistors |
title | High-Performance Hexagonal Tellurium Thin-Film Transistor Using Tellurium Oxide as a Crystallization Retarder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Hexagonal%20Tellurium%20Thin-Film%20Transistor%20Using%20Tellurium%20Oxide%20as%20a%20Crystallization%20Retarder&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Kim,%20Taikyu&rft.date=2023-02-01&rft.volume=44&rft.issue=2&rft.spage=269&rft.epage=272&rft.pages=269-272&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2022.3230705&rft_dat=%3Cproquest_cross%3E2770776962%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-bd596ef9fb8d89af4e36deb6f9577f79c772518ff2b293889858d73c99fedc613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770776962&rft_id=info:pmid/&rft_ieee_id=9992200&rfr_iscdi=true |