Loading…
A Hybrid Instruction Prefetching Mechanism for Ultra Low-Power Multicore Clusters
The instruction memory hierarchy plays a critical role in performance and energy efficiency of ultralow-power (ULP) processors for the Internet-of-Things (IoT) end-nodes. This is mainly due to the extremely tight power envelope and area budgets, which imply small instruction-caches (I-Cache) operati...
Saved in:
Published in: | IEEE embedded systems letters 2017-12, Vol.9 (4), p.125-128 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The instruction memory hierarchy plays a critical role in performance and energy efficiency of ultralow-power (ULP) processors for the Internet-of-Things (IoT) end-nodes. This is mainly due to the extremely tight power envelope and area budgets, which imply small instruction-caches (I-Cache) operating at very low supply voltages (near-threshold). The challenge is aggravated by the fact that multiple processors, fetching in parallel, require plenty of bandwidth from the I-Caches. In this letter, we propose a low-cost and energy efficient hybrid instruction-prefetching mechanism to be integrated with a ULP multicore cluster. We study its performance for a wide range of IoT applications, from cryptography to computer vision, and show that it can effectively improve the hit-rate of almost all of them to above 95% (average performance improvement of over 2×). In addition, we designed our prefetcher and integrated it in a 4-cores cluster in 28 nm fully-depleted silicon-on-insulator (FDSOI) technology. We show that system's power consumption increases only by about 11% and silicon area by less than 1%. Altogether, a total energy reduction of 1.9× is achieved, thanks to more than 2× performance improvement, enabling a significantly longer battery life. |
---|---|
ISSN: | 1943-0663 1943-0671 |
DOI: | 10.1109/LES.2017.2707978 |