Loading…

Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes

In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2015-06, Vol.12 (6), p.1287-1291
Main Authors: Binol, Hamidullah, Bilgin, Gokhan, Dinc, Semih, Bal, Abdullah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3
cites cdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3
container_end_page 1291
container_issue 6
container_start_page 1287
container_title IEEE geoscience and remote sensing letters
container_volume 12
creator Binol, Hamidullah
Bilgin, Gokhan
Dinc, Semih
Bal, Abdullah
description In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images.
doi_str_mv 10.1109/LGRS.2015.2393438
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2015_2393438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7044575</ieee_id><sourcerecordid>3623503121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmbXspwH2wg2IHehTQ7mZ1tU5P2Yvv1dmx4dc6B530PPAg9UjKhlGQv6_lHPokJFZOYZYwzeYVGVAgZEZHS69PORSQy-XWL7kLYExJzKdMRqlfgG6jwrP_pG73T0cq5pjvijddNsM7XOO-L0GoDAQ8nnlY6hNKWRnela7CzeHFowYcWTOd1hZe13g3oZ9l947zWVYVzXbcV4Lw8QrhHN1ZXAR4uc4w2s7fNdBGt3-fL6es6MixhXRRTAVRnwqQiJQRYkRBJZcZiY2NeZBkHboUF2DKjRUFAGkEoiVMptzbhwMbo-VzbevfbQ-jU3vW-GT4qmiSMEc5lMlD0TBnvQvBgVevLWvuDokSdpKqTVHWSqi5Sh8zTOVMCwD-fDoUiFewP6FR0GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663304486</pqid></control><display><type>article</type><title>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Binol, Hamidullah ; Bilgin, Gokhan ; Dinc, Semih ; Bal, Abdullah</creator><creatorcontrib>Binol, Hamidullah ; Bilgin, Gokhan ; Dinc, Semih ; Bal, Abdullah</creatorcontrib><description>In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2015.2393438</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Covariance matrices ; Fukunaga-Koontz transform (FKT) ; hyperspectral images ; Hyperspectral imaging ; Kernel ; kernel-based methods ; Remote sensing ; Training ; Transforms ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-06, Vol.12 (6), p.1287-1291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</citedby><cites>FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7044575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Binol, Hamidullah</creatorcontrib><creatorcontrib>Bilgin, Gokhan</creatorcontrib><creatorcontrib>Dinc, Semih</creatorcontrib><creatorcontrib>Bal, Abdullah</creatorcontrib><title>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images.</description><subject>Classification</subject><subject>Covariance matrices</subject><subject>Fukunaga-Koontz transform (FKT)</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Kernel</subject><subject>kernel-based methods</subject><subject>Remote sensing</subject><subject>Training</subject><subject>Transforms</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmbXspwH2wg2IHehTQ7mZ1tU5P2Yvv1dmx4dc6B530PPAg9UjKhlGQv6_lHPokJFZOYZYwzeYVGVAgZEZHS69PORSQy-XWL7kLYExJzKdMRqlfgG6jwrP_pG73T0cq5pjvijddNsM7XOO-L0GoDAQ8nnlY6hNKWRnela7CzeHFowYcWTOd1hZe13g3oZ9l947zWVYVzXbcV4Lw8QrhHN1ZXAR4uc4w2s7fNdBGt3-fL6es6MixhXRRTAVRnwqQiJQRYkRBJZcZiY2NeZBkHboUF2DKjRUFAGkEoiVMptzbhwMbo-VzbevfbQ-jU3vW-GT4qmiSMEc5lMlD0TBnvQvBgVevLWvuDokSdpKqTVHWSqi5Sh8zTOVMCwD-fDoUiFewP6FR0GA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Binol, Hamidullah</creator><creator>Bilgin, Gokhan</creator><creator>Dinc, Semih</creator><creator>Bal, Abdullah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</title><author>Binol, Hamidullah ; Bilgin, Gokhan ; Dinc, Semih ; Bal, Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Covariance matrices</topic><topic>Fukunaga-Koontz transform (FKT)</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Kernel</topic><topic>kernel-based methods</topic><topic>Remote sensing</topic><topic>Training</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binol, Hamidullah</creatorcontrib><creatorcontrib>Bilgin, Gokhan</creatorcontrib><creatorcontrib>Dinc, Semih</creatorcontrib><creatorcontrib>Bal, Abdullah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binol, Hamidullah</au><au>Bilgin, Gokhan</au><au>Dinc, Semih</au><au>Bal, Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>12</volume><issue>6</issue><spage>1287</spage><epage>1291</epage><pages>1287-1291</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2015.2393438</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2015-06, Vol.12 (6), p.1287-1291
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2015_2393438
source IEEE Electronic Library (IEL) Journals
subjects Classification
Covariance matrices
Fukunaga-Koontz transform (FKT)
hyperspectral images
Hyperspectral imaging
Kernel
kernel-based methods
Remote sensing
Training
Transforms
Vectors
title Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20Fukunaga-Koontz%20Transform%20Subspaces%20for%20Classification%20of%20Hyperspectral%20Images%20With%20Small%20Sample%20Sizes&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Binol,%20Hamidullah&rft.date=2015-06-01&rft.volume=12&rft.issue=6&rft.spage=1287&rft.epage=1291&rft.pages=1287-1291&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2015.2393438&rft_dat=%3Cproquest_cross%3E3623503121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1663304486&rft_id=info:pmid/&rft_ieee_id=7044575&rfr_iscdi=true