Loading…
Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes
In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especi...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2015-06, Vol.12 (6), p.1287-1291 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3 |
container_end_page | 1291 |
container_issue | 6 |
container_start_page | 1287 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 12 |
creator | Binol, Hamidullah Bilgin, Gokhan Dinc, Semih Bal, Abdullah |
description | In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images. |
doi_str_mv | 10.1109/LGRS.2015.2393438 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2015_2393438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7044575</ieee_id><sourcerecordid>3623503121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmbXspwH2wg2IHehTQ7mZ1tU5P2Yvv1dmx4dc6B530PPAg9UjKhlGQv6_lHPokJFZOYZYwzeYVGVAgZEZHS69PORSQy-XWL7kLYExJzKdMRqlfgG6jwrP_pG73T0cq5pjvijddNsM7XOO-L0GoDAQ8nnlY6hNKWRnela7CzeHFowYcWTOd1hZe13g3oZ9l947zWVYVzXbcV4Lw8QrhHN1ZXAR4uc4w2s7fNdBGt3-fL6es6MixhXRRTAVRnwqQiJQRYkRBJZcZiY2NeZBkHboUF2DKjRUFAGkEoiVMptzbhwMbo-VzbevfbQ-jU3vW-GT4qmiSMEc5lMlD0TBnvQvBgVevLWvuDokSdpKqTVHWSqi5Sh8zTOVMCwD-fDoUiFewP6FR0GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663304486</pqid></control><display><type>article</type><title>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Binol, Hamidullah ; Bilgin, Gokhan ; Dinc, Semih ; Bal, Abdullah</creator><creatorcontrib>Binol, Hamidullah ; Bilgin, Gokhan ; Dinc, Semih ; Bal, Abdullah</creatorcontrib><description>In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2015.2393438</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Covariance matrices ; Fukunaga-Koontz transform (FKT) ; hyperspectral images ; Hyperspectral imaging ; Kernel ; kernel-based methods ; Remote sensing ; Training ; Transforms ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-06, Vol.12 (6), p.1287-1291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</citedby><cites>FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7044575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Binol, Hamidullah</creatorcontrib><creatorcontrib>Bilgin, Gokhan</creatorcontrib><creatorcontrib>Dinc, Semih</creatorcontrib><creatorcontrib>Bal, Abdullah</creatorcontrib><title>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images.</description><subject>Classification</subject><subject>Covariance matrices</subject><subject>Fukunaga-Koontz transform (FKT)</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Kernel</subject><subject>kernel-based methods</subject><subject>Remote sensing</subject><subject>Training</subject><subject>Transforms</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmbXspwH2wg2IHehTQ7mZ1tU5P2Yvv1dmx4dc6B530PPAg9UjKhlGQv6_lHPokJFZOYZYwzeYVGVAgZEZHS69PORSQy-XWL7kLYExJzKdMRqlfgG6jwrP_pG73T0cq5pjvijddNsM7XOO-L0GoDAQ8nnlY6hNKWRnela7CzeHFowYcWTOd1hZe13g3oZ9l947zWVYVzXbcV4Lw8QrhHN1ZXAR4uc4w2s7fNdBGt3-fL6es6MixhXRRTAVRnwqQiJQRYkRBJZcZiY2NeZBkHboUF2DKjRUFAGkEoiVMptzbhwMbo-VzbevfbQ-jU3vW-GT4qmiSMEc5lMlD0TBnvQvBgVevLWvuDokSdpKqTVHWSqi5Sh8zTOVMCwD-fDoUiFewP6FR0GA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Binol, Hamidullah</creator><creator>Bilgin, Gokhan</creator><creator>Dinc, Semih</creator><creator>Bal, Abdullah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</title><author>Binol, Hamidullah ; Bilgin, Gokhan ; Dinc, Semih ; Bal, Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Covariance matrices</topic><topic>Fukunaga-Koontz transform (FKT)</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Kernel</topic><topic>kernel-based methods</topic><topic>Remote sensing</topic><topic>Training</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binol, Hamidullah</creatorcontrib><creatorcontrib>Bilgin, Gokhan</creatorcontrib><creatorcontrib>Dinc, Semih</creatorcontrib><creatorcontrib>Bal, Abdullah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binol, Hamidullah</au><au>Bilgin, Gokhan</au><au>Dinc, Semih</au><au>Bal, Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>12</volume><issue>6</issue><spage>1287</spage><epage>1291</epage><pages>1287-1291</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, a novel supervised classification approach is presented for the classification of hyperspectral images using kernel Fukunaga-Koontz transform (KFKT). The Fukunaga-Koontz transform (FKT) is originally a powerful target detection method used in remote sensing tasks, and it is an especially good classification tool for two-class problems. The traditional FKT method has been kernelized for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this letter aims to solve the multiclass problem by regarding one class as target that is tried to be separated from the remaining classes (as clutter) like one-against-all methodology. The KFKT provides superior performance in the classification of hyperspectral data even using small number of samples because of nonlinear separability of data in higher dimensional space. The experiments confirm that KFKT has better and promising results than FKT and support vector machine in classification of hyperspectral images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2015.2393438</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2015-06, Vol.12 (6), p.1287-1291 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2015_2393438 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Classification Covariance matrices Fukunaga-Koontz transform (FKT) hyperspectral images Hyperspectral imaging Kernel kernel-based methods Remote sensing Training Transforms Vectors |
title | Kernel Fukunaga-Koontz Transform Subspaces for Classification of Hyperspectral Images With Small Sample Sizes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20Fukunaga-Koontz%20Transform%20Subspaces%20for%20Classification%20of%20Hyperspectral%20Images%20With%20Small%20Sample%20Sizes&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Binol,%20Hamidullah&rft.date=2015-06-01&rft.volume=12&rft.issue=6&rft.spage=1287&rft.epage=1291&rft.pages=1287-1291&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2015.2393438&rft_dat=%3Cproquest_cross%3E3623503121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-215e1a95c75700e3b60818932cf24b994e4f5feed3ca5b0e8c50102788df64e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1663304486&rft_id=info:pmid/&rft_ieee_id=7044575&rfr_iscdi=true |