Loading…

Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering

In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2018-10, Vol.15 (10), p.1595-1599
Main Authors: Wei, Peng-Bo, Zhang, Min, Jiang, Wang-Qiang, Jiao, Yong-Chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293
cites cdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293
container_end_page 1599
container_issue 10
container_start_page 1595
container_title IEEE geoscience and remote sensing letters
container_volume 15
creator Wei, Peng-Bo
Zhang, Min
Jiang, Wang-Qiang
Jiao, Yong-Chang
description In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes.
doi_str_mv 10.1109/LGRS.2018.2851373
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2018_2851373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412087</ieee_id><sourcerecordid>2117176863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPgS8DkzlzRN-ihT56BVsBP2FkJ7mR1bO9NW8L-3ZUM4uOP4vu-4HyG3wGcAPHlIFx_5THAwM2EUSC3PyASUMowrDefjHCmmErO-JFdtu-VcRMboCVkv6x9su2rjuqqp6VDZW7qiGXZfTUl9E6hkT3TehIA712FJM3egebXvdyeDpzk6lvfBuwJpXriuw1DVm2ty4d2uxZtTn5LPl-fV_JWl74vl_DFlhUhkx0yZOC1F4qWBghfApY6AD1k-ltGw5EoJTFQZOxAYRx5lmZgSUBbaR2PElNwfcw-h-e6HV-y26UM9nLQCQIOOTSwHFRxVRWjaNqC3h1DtXfi1wO0I0I4A7QjQngAOnrujp0LEf72JQHCj5R-wPmry</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117176863</pqid></control><display><type>article</type><title>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</title><source>IEEE Xplore (Online service)</source><creator>Wei, Peng-Bo ; Zhang, Min ; Jiang, Wang-Qiang ; Jiao, Yong-Chang</creator><creatorcontrib>Wei, Peng-Bo ; Zhang, Min ; Jiang, Wang-Qiang ; Jiao, Yong-Chang</creatorcontrib><description>In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2851373</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clutter ; Computational modeling ; Correlation ; Data models ; Data simulation ; Estimation ; Gaussian process ; Interpolation ; Memoryless nonlinear transform (MNLT) method ; Methods ; Predictive models ; Radar ; Radar clutter ; Remote sensing ; Scattering ; sea scattering map ; Simulation ; Solid modeling ; space-time correlation ; Spectra ; Stochastic processes ; Stochasticity ; Temperature (air-sea)</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1595-1599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</citedby><cites>FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</cites><orcidid>0000-0001-9992-0007 ; 0000-0001-7936-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wei, Peng-Bo</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Jiang, Wang-Qiang</creatorcontrib><creatorcontrib>Jiao, Yong-Chang</creatorcontrib><title>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes.</description><subject>Clutter</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Data models</subject><subject>Data simulation</subject><subject>Estimation</subject><subject>Gaussian process</subject><subject>Interpolation</subject><subject>Memoryless nonlinear transform (MNLT) method</subject><subject>Methods</subject><subject>Predictive models</subject><subject>Radar</subject><subject>Radar clutter</subject><subject>Remote sensing</subject><subject>Scattering</subject><subject>sea scattering map</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>space-time correlation</subject><subject>Spectra</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Temperature (air-sea)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOKd_gPgS8DkzlzRN-ihT56BVsBP2FkJ7mR1bO9NW8L-3ZUM4uOP4vu-4HyG3wGcAPHlIFx_5THAwM2EUSC3PyASUMowrDefjHCmmErO-JFdtu-VcRMboCVkv6x9su2rjuqqp6VDZW7qiGXZfTUl9E6hkT3TehIA712FJM3egebXvdyeDpzk6lvfBuwJpXriuw1DVm2ty4d2uxZtTn5LPl-fV_JWl74vl_DFlhUhkx0yZOC1F4qWBghfApY6AD1k-ltGw5EoJTFQZOxAYRx5lmZgSUBbaR2PElNwfcw-h-e6HV-y26UM9nLQCQIOOTSwHFRxVRWjaNqC3h1DtXfi1wO0I0I4A7QjQngAOnrujp0LEf72JQHCj5R-wPmry</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wei, Peng-Bo</creator><creator>Zhang, Min</creator><creator>Jiang, Wang-Qiang</creator><creator>Jiao, Yong-Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9992-0007</orcidid><orcidid>https://orcid.org/0000-0001-7936-7355</orcidid></search><sort><creationdate>20181001</creationdate><title>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</title><author>Wei, Peng-Bo ; Zhang, Min ; Jiang, Wang-Qiang ; Jiao, Yong-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clutter</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Data models</topic><topic>Data simulation</topic><topic>Estimation</topic><topic>Gaussian process</topic><topic>Interpolation</topic><topic>Memoryless nonlinear transform (MNLT) method</topic><topic>Methods</topic><topic>Predictive models</topic><topic>Radar</topic><topic>Radar clutter</topic><topic>Remote sensing</topic><topic>Scattering</topic><topic>sea scattering map</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>space-time correlation</topic><topic>Spectra</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Temperature (air-sea)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Peng-Bo</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Jiang, Wang-Qiang</creatorcontrib><creatorcontrib>Jiao, Yong-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Peng-Bo</au><au>Zhang, Min</au><au>Jiang, Wang-Qiang</au><au>Jiao, Yong-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>15</volume><issue>10</issue><spage>1595</spage><epage>1599</epage><pages>1595-1599</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2851373</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9992-0007</orcidid><orcidid>https://orcid.org/0000-0001-7936-7355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1595-1599
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2018_2851373
source IEEE Xplore (Online service)
subjects Clutter
Computational modeling
Correlation
Data models
Data simulation
Estimation
Gaussian process
Interpolation
Memoryless nonlinear transform (MNLT) method
Methods
Predictive models
Radar
Radar clutter
Remote sensing
Scattering
sea scattering map
Simulation
Solid modeling
space-time correlation
Spectra
Stochastic processes
Stochasticity
Temperature (air-sea)
title Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20MNLT%20Method%20for%203-D%20Correlated%20Map%20Simulation%20of%20Sea-Surface%20Scattering&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wei,%20Peng-Bo&rft.date=2018-10-01&rft.volume=15&rft.issue=10&rft.spage=1595&rft.epage=1599&rft.pages=1595-1599&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2851373&rft_dat=%3Cproquest_cross%3E2117176863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117176863&rft_id=info:pmid/&rft_ieee_id=8412087&rfr_iscdi=true