Loading…
Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering
In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2018-10, Vol.15 (10), p.1595-1599 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293 |
container_end_page | 1599 |
container_issue | 10 |
container_start_page | 1595 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 15 |
creator | Wei, Peng-Bo Zhang, Min Jiang, Wang-Qiang Jiao, Yong-Chang |
description | In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes. |
doi_str_mv | 10.1109/LGRS.2018.2851373 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2018_2851373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412087</ieee_id><sourcerecordid>2117176863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPgS8DkzlzRN-ihT56BVsBP2FkJ7mR1bO9NW8L-3ZUM4uOP4vu-4HyG3wGcAPHlIFx_5THAwM2EUSC3PyASUMowrDefjHCmmErO-JFdtu-VcRMboCVkv6x9su2rjuqqp6VDZW7qiGXZfTUl9E6hkT3TehIA712FJM3egebXvdyeDpzk6lvfBuwJpXriuw1DVm2ty4d2uxZtTn5LPl-fV_JWl74vl_DFlhUhkx0yZOC1F4qWBghfApY6AD1k-ltGw5EoJTFQZOxAYRx5lmZgSUBbaR2PElNwfcw-h-e6HV-y26UM9nLQCQIOOTSwHFRxVRWjaNqC3h1DtXfi1wO0I0I4A7QjQngAOnrujp0LEf72JQHCj5R-wPmry</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117176863</pqid></control><display><type>article</type><title>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</title><source>IEEE Xplore (Online service)</source><creator>Wei, Peng-Bo ; Zhang, Min ; Jiang, Wang-Qiang ; Jiao, Yong-Chang</creator><creatorcontrib>Wei, Peng-Bo ; Zhang, Min ; Jiang, Wang-Qiang ; Jiao, Yong-Chang</creatorcontrib><description>In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2851373</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clutter ; Computational modeling ; Correlation ; Data models ; Data simulation ; Estimation ; Gaussian process ; Interpolation ; Memoryless nonlinear transform (MNLT) method ; Methods ; Predictive models ; Radar ; Radar clutter ; Remote sensing ; Scattering ; sea scattering map ; Simulation ; Solid modeling ; space-time correlation ; Spectra ; Stochastic processes ; Stochasticity ; Temperature (air-sea)</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1595-1599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</citedby><cites>FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</cites><orcidid>0000-0001-9992-0007 ; 0000-0001-7936-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wei, Peng-Bo</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Jiang, Wang-Qiang</creatorcontrib><creatorcontrib>Jiao, Yong-Chang</creatorcontrib><title>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes.</description><subject>Clutter</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Data models</subject><subject>Data simulation</subject><subject>Estimation</subject><subject>Gaussian process</subject><subject>Interpolation</subject><subject>Memoryless nonlinear transform (MNLT) method</subject><subject>Methods</subject><subject>Predictive models</subject><subject>Radar</subject><subject>Radar clutter</subject><subject>Remote sensing</subject><subject>Scattering</subject><subject>sea scattering map</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>space-time correlation</subject><subject>Spectra</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Temperature (air-sea)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQxoMoOKd_gPgS8DkzlzRN-ihT56BVsBP2FkJ7mR1bO9NW8L-3ZUM4uOP4vu-4HyG3wGcAPHlIFx_5THAwM2EUSC3PyASUMowrDefjHCmmErO-JFdtu-VcRMboCVkv6x9su2rjuqqp6VDZW7qiGXZfTUl9E6hkT3TehIA712FJM3egebXvdyeDpzk6lvfBuwJpXriuw1DVm2ty4d2uxZtTn5LPl-fV_JWl74vl_DFlhUhkx0yZOC1F4qWBghfApY6AD1k-ltGw5EoJTFQZOxAYRx5lmZgSUBbaR2PElNwfcw-h-e6HV-y26UM9nLQCQIOOTSwHFRxVRWjaNqC3h1DtXfi1wO0I0I4A7QjQngAOnrujp0LEf72JQHCj5R-wPmry</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wei, Peng-Bo</creator><creator>Zhang, Min</creator><creator>Jiang, Wang-Qiang</creator><creator>Jiao, Yong-Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9992-0007</orcidid><orcidid>https://orcid.org/0000-0001-7936-7355</orcidid></search><sort><creationdate>20181001</creationdate><title>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</title><author>Wei, Peng-Bo ; Zhang, Min ; Jiang, Wang-Qiang ; Jiao, Yong-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clutter</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Data models</topic><topic>Data simulation</topic><topic>Estimation</topic><topic>Gaussian process</topic><topic>Interpolation</topic><topic>Memoryless nonlinear transform (MNLT) method</topic><topic>Methods</topic><topic>Predictive models</topic><topic>Radar</topic><topic>Radar clutter</topic><topic>Remote sensing</topic><topic>Scattering</topic><topic>sea scattering map</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>space-time correlation</topic><topic>Spectra</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Temperature (air-sea)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Peng-Bo</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Jiang, Wang-Qiang</creatorcontrib><creatorcontrib>Jiao, Yong-Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Peng-Bo</au><au>Zhang, Min</au><au>Jiang, Wang-Qiang</au><au>Jiao, Yong-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>15</volume><issue>10</issue><spage>1595</spage><epage>1599</epage><pages>1595-1599</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In simulations of different kinds of radar clutter or scattering intensity distribution of terrain or sea surroundings, the memoryless nonlinear transform (MNLT) method is one of the most widely used approach for the simulation of non-Gaussian stochastic process or high-dimensional field, especially for the requirement of high-efficiency purpose. Concerning the MNLT method, the estimation of power spectral function usually exerts a strong impact on the quality of the implementation, which is not discussed in the previous literatures. This letter gives a study on the comparison of the 3-D correlated map simulations of sea-surface scattering using different ways of power spectral function estimation in the small to large sea scattering data simulation. From comparisons of the simulation results, it is observed that the interpolation-based expanding method is the optimal way to conduct power spectral function estimation, which can make a significant contribution to the scattering predictions and remote sensing simulations concerning the large maritime scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2851373</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9992-0007</orcidid><orcidid>https://orcid.org/0000-0001-7936-7355</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2018-10, Vol.15 (10), p.1595-1599 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2018_2851373 |
source | IEEE Xplore (Online service) |
subjects | Clutter Computational modeling Correlation Data models Data simulation Estimation Gaussian process Interpolation Memoryless nonlinear transform (MNLT) method Methods Predictive models Radar Radar clutter Remote sensing Scattering sea scattering map Simulation Solid modeling space-time correlation Spectra Stochastic processes Stochasticity Temperature (air-sea) |
title | Investigation on MNLT Method for 3-D Correlated Map Simulation of Sea-Surface Scattering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20MNLT%20Method%20for%203-D%20Correlated%20Map%20Simulation%20of%20Sea-Surface%20Scattering&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wei,%20Peng-Bo&rft.date=2018-10-01&rft.volume=15&rft.issue=10&rft.spage=1595&rft.epage=1599&rft.pages=1595-1599&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2851373&rft_dat=%3Cproquest_cross%3E2117176863%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-8d9a7329f381c0c1037410facf634f380552e95d6a12e64fe3d98d1e3c7f4c293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117176863&rft_id=info:pmid/&rft_ieee_id=8412087&rfr_iscdi=true |