Loading…
GNSS and SAR Signal Delay in Perturbed Ionospheric D-Region During Solar X-Ray Flares
We investigate the influence of the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems (GNSS) and synthetic aperture radar (SAR) signals. We calculate a signal delay in the D-region based on the low ionospheric monitoring by very-low-frequency (VLF) ra...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2020-07, Vol.17 (7), p.1198-1202 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the influence of the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems (GNSS) and synthetic aperture radar (SAR) signals. We calculate a signal delay in the D-region based on the low ionospheric monitoring by very-low-frequency (VLF) radio waves. The results show that the ionospheric delay in the perturbed D-region can be important and, therefore, should be taken into account in modeling the ionospheric influence on the GNSS and SAR signal propagation and in calculations relevant for space geodesy. This conclusion is significant because numerous existing models ignore the impact of this ionospheric part on the GNSS and SAR signals due to its small electron density which is true only in quiet conditions and can result in significant errors in space geodesy during intensive ionospheric disturbances. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2019.2941643 |