Loading…
An Adaptive Rainfall Estimation Algorithm for Dual-Polarization Radar
Dual-polarization radar provides information about precipitation microphysics through drop size distribution and hydrometeor classification, and, therefore, can produce improvement in quantitative precipitation estimation. Rainfall relations combination is an optimization algorithm; however, optimal...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dual-polarization radar provides information about precipitation microphysics through drop size distribution and hydrometeor classification, and, therefore, can produce improvement in quantitative precipitation estimation. Rainfall relations combination is an optimization algorithm; however, optimally selecting the rainfall relation is challenging in dual-polarization rainfall estimation. In this study, an adaptive rainfall algorithm is developed using a logistic regression model to guide the choice of the optimal radar rainfall relation. The logistic model is established according to the matched dual-polarization radar data and rain gauge data. Only liquid particles are considered for the rainfall estimation determined by the hydrometeor classification of dual-polarization radar, and the polarimetric rainfall relations are obtained with a neural network algorithm based on the disdrometer data. The proposed algorithm is validated with C-band dual-polarization radar data, and the results show that the adaptive algorithm outperforms the single rainfall relation and conventional combination algorithm. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2022.3143118 |