Loading…
CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology
Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Ne...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Chhapariya, Koushikey Buddhiraju, Krishna Mohan Kumar, Anil |
description | Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets. |
doi_str_mv | 10.1109/LGRS.2022.3220601 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3220601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9941145</ieee_id><sourcerecordid>2739837453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPsrUbTA3cBN8C0l6Nzu6tiYduG9vyoZw4Vwu59x7-SF0T8mIUpI_zScfqxEjjI04YyQj9AINqBAqIULSy75PRSJy9XWNbkLYEcJSpeQArceLRWJNgAKvTFVC3eGl3YHr8At0UcqmxrGmxxZ8aOPAmwrP9mYLAR9CWW_x628HdRHz741vv5uq2R5v0dXGVAHuzjpEn2-v6_E0mS8ns_HzPHGcZ11SWBc_lMq5VHHmhKWpEUxtwFqmiGJOZkRlXFDHCmM5OKNskUpFjOPKOMmH6PG0t_XNzwFCp3fNwdfxpGaS54rLVPDooieX800IHja69eXe-KOmRPfwdA9P9_D0GV7MPJwyJQD8-_M8pTSu_AMZk2sn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739837453</pqid></control><display><type>article</type><title>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</title><source>IEEE Xplore (Online service)</source><creator>Chhapariya, Koushikey ; Buddhiraju, Krishna Mohan ; Kumar, Anil</creator><creatorcontrib>Chhapariya, Koushikey ; Buddhiraju, Krishna Mohan ; Kumar, Anil</creatorcontrib><description>Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3220601</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; CNN ; Computer vision ; Convolutional neural networks ; Data mining ; Datasets ; Detection ; EMP ; Error analysis ; Extended Morphology ; Feature extraction ; hyperspectral image ; Hyperspectral imaging ; Image processing ; Imagery ; Information processing ; Methods ; Morphology ; Neural networks ; Object detection ; Object recognition ; Principal component analysis ; Salience ; Salient object detection ; spectral-spatial classification ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</citedby><cites>FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</cites><orcidid>0000-0001-6815-8988 ; 0000-0001-5856-3066 ; 0000-0002-7177-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9941145$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chhapariya, Koushikey</creatorcontrib><creatorcontrib>Buddhiraju, Krishna Mohan</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><title>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets.</description><subject>Artificial neural networks</subject><subject>CNN</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Detection</subject><subject>EMP</subject><subject>Error analysis</subject><subject>Extended Morphology</subject><subject>Feature extraction</subject><subject>hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Imagery</subject><subject>Information processing</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Principal component analysis</subject><subject>Salience</subject><subject>Salient object detection</subject><subject>spectral-spatial classification</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPsrUbTA3cBN8C0l6Nzu6tiYduG9vyoZw4Vwu59x7-SF0T8mIUpI_zScfqxEjjI04YyQj9AINqBAqIULSy75PRSJy9XWNbkLYEcJSpeQArceLRWJNgAKvTFVC3eGl3YHr8At0UcqmxrGmxxZ8aOPAmwrP9mYLAR9CWW_x628HdRHz741vv5uq2R5v0dXGVAHuzjpEn2-v6_E0mS8ns_HzPHGcZ11SWBc_lMq5VHHmhKWpEUxtwFqmiGJOZkRlXFDHCmM5OKNskUpFjOPKOMmH6PG0t_XNzwFCp3fNwdfxpGaS54rLVPDooieX800IHja69eXe-KOmRPfwdA9P9_D0GV7MPJwyJQD8-_M8pTSu_AMZk2sn</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chhapariya, Koushikey</creator><creator>Buddhiraju, Krishna Mohan</creator><creator>Kumar, Anil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6815-8988</orcidid><orcidid>https://orcid.org/0000-0001-5856-3066</orcidid><orcidid>https://orcid.org/0000-0002-7177-0817</orcidid></search><sort><creationdate>2022</creationdate><title>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</title><author>Chhapariya, Koushikey ; Buddhiraju, Krishna Mohan ; Kumar, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>CNN</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Detection</topic><topic>EMP</topic><topic>Error analysis</topic><topic>Extended Morphology</topic><topic>Feature extraction</topic><topic>hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Imagery</topic><topic>Information processing</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Principal component analysis</topic><topic>Salience</topic><topic>Salient object detection</topic><topic>spectral-spatial classification</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhapariya, Koushikey</creatorcontrib><creatorcontrib>Buddhiraju, Krishna Mohan</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhapariya, Koushikey</au><au>Buddhiraju, Krishna Mohan</au><au>Kumar, Anil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3220601</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6815-8988</orcidid><orcidid>https://orcid.org/0000-0001-5856-3066</orcidid><orcidid>https://orcid.org/0000-0002-7177-0817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2022_3220601 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks CNN Computer vision Convolutional neural networks Data mining Datasets Detection EMP Error analysis Extended Morphology Feature extraction hyperspectral image Hyperspectral imaging Image processing Imagery Information processing Methods Morphology Neural networks Object detection Object recognition Principal component analysis Salience Salient object detection spectral-spatial classification Training |
title | CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-based%20Salient%20Object%20Detection%20on%20Hyperspectral%20Images%20using%20Extended%20Morphology&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Chhapariya,%20Koushikey&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3220601&rft_dat=%3Cproquest_cross%3E2739837453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739837453&rft_id=info:pmid/&rft_ieee_id=9941145&rfr_iscdi=true |