Loading…

CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology

Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Ne...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-1
Main Authors: Chhapariya, Koushikey, Buddhiraju, Krishna Mohan, Kumar, Anil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73
cites cdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Chhapariya, Koushikey
Buddhiraju, Krishna Mohan
Kumar, Anil
description Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets.
doi_str_mv 10.1109/LGRS.2022.3220601
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2022_3220601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9941145</ieee_id><sourcerecordid>2739837453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPsrUbTA3cBN8C0l6Nzu6tiYduG9vyoZw4Vwu59x7-SF0T8mIUpI_zScfqxEjjI04YyQj9AINqBAqIULSy75PRSJy9XWNbkLYEcJSpeQArceLRWJNgAKvTFVC3eGl3YHr8At0UcqmxrGmxxZ8aOPAmwrP9mYLAR9CWW_x628HdRHz741vv5uq2R5v0dXGVAHuzjpEn2-v6_E0mS8ns_HzPHGcZ11SWBc_lMq5VHHmhKWpEUxtwFqmiGJOZkRlXFDHCmM5OKNskUpFjOPKOMmH6PG0t_XNzwFCp3fNwdfxpGaS54rLVPDooieX800IHja69eXe-KOmRPfwdA9P9_D0GV7MPJwyJQD8-_M8pTSu_AMZk2sn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739837453</pqid></control><display><type>article</type><title>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</title><source>IEEE Xplore (Online service)</source><creator>Chhapariya, Koushikey ; Buddhiraju, Krishna Mohan ; Kumar, Anil</creator><creatorcontrib>Chhapariya, Koushikey ; Buddhiraju, Krishna Mohan ; Kumar, Anil</creatorcontrib><description>Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2022.3220601</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; CNN ; Computer vision ; Convolutional neural networks ; Data mining ; Datasets ; Detection ; EMP ; Error analysis ; Extended Morphology ; Feature extraction ; hyperspectral image ; Hyperspectral imaging ; Image processing ; Imagery ; Information processing ; Methods ; Morphology ; Neural networks ; Object detection ; Object recognition ; Principal component analysis ; Salience ; Salient object detection ; spectral-spatial classification ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</citedby><cites>FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</cites><orcidid>0000-0001-6815-8988 ; 0000-0001-5856-3066 ; 0000-0002-7177-0817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9941145$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chhapariya, Koushikey</creatorcontrib><creatorcontrib>Buddhiraju, Krishna Mohan</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><title>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets.</description><subject>Artificial neural networks</subject><subject>CNN</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Detection</subject><subject>EMP</subject><subject>Error analysis</subject><subject>Extended Morphology</subject><subject>Feature extraction</subject><subject>hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Imagery</subject><subject>Information processing</subject><subject>Methods</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Principal component analysis</subject><subject>Salience</subject><subject>Salient object detection</subject><subject>spectral-spatial classification</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP02TPsrUbTA3cBN8C0l6Nzu6tiYduG9vyoZw4Vwu59x7-SF0T8mIUpI_zScfqxEjjI04YyQj9AINqBAqIULSy75PRSJy9XWNbkLYEcJSpeQArceLRWJNgAKvTFVC3eGl3YHr8At0UcqmxrGmxxZ8aOPAmwrP9mYLAR9CWW_x628HdRHz741vv5uq2R5v0dXGVAHuzjpEn2-v6_E0mS8ns_HzPHGcZ11SWBc_lMq5VHHmhKWpEUxtwFqmiGJOZkRlXFDHCmM5OKNskUpFjOPKOMmH6PG0t_XNzwFCp3fNwdfxpGaS54rLVPDooieX800IHja69eXe-KOmRPfwdA9P9_D0GV7MPJwyJQD8-_M8pTSu_AMZk2sn</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chhapariya, Koushikey</creator><creator>Buddhiraju, Krishna Mohan</creator><creator>Kumar, Anil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6815-8988</orcidid><orcidid>https://orcid.org/0000-0001-5856-3066</orcidid><orcidid>https://orcid.org/0000-0002-7177-0817</orcidid></search><sort><creationdate>2022</creationdate><title>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</title><author>Chhapariya, Koushikey ; Buddhiraju, Krishna Mohan ; Kumar, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>CNN</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Detection</topic><topic>EMP</topic><topic>Error analysis</topic><topic>Extended Morphology</topic><topic>Feature extraction</topic><topic>hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Imagery</topic><topic>Information processing</topic><topic>Methods</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Principal component analysis</topic><topic>Salience</topic><topic>Salient object detection</topic><topic>spectral-spatial classification</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhapariya, Koushikey</creatorcontrib><creatorcontrib>Buddhiraju, Krishna Mohan</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhapariya, Koushikey</au><au>Buddhiraju, Krishna Mohan</au><au>Kumar, Anil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Salient object detection in hyperspectral images is of interest in various image processing and computer vision applications. Many studies considering spectral information have been reported, extracting only low-level features from a hyperspectral image. This paper proposes a Convolutional Neural Network (CNN) based salient object detection method using hyperspectral imagery to utilise spatial and spectral information simultaneously. The proposed methodology incorporates Extended Morphological Profile (EMP) followed by a CNN to utilise the information from nearby pixels and high-level features simultaneously. We have evaluated the performance of the proposed approach on two independent datasets to verify the generalisation ability, viz. 1) Hyperspectral Salient Object Detection Dataset (HS-SOD) and 2) Pavia University dataset. An extensive quantitative analysis of the results revealed that the proposed method significantly outperforms other state-of-the-art methods by approximately ≥ 2% of AUC (Area Under receiver operating characteristic Curve) and F-measure and lower mean absolute error for both datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2022.3220601</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6815-8988</orcidid><orcidid>https://orcid.org/0000-0001-5856-3066</orcidid><orcidid>https://orcid.org/0000-0002-7177-0817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2022_3220601
source IEEE Xplore (Online service)
subjects Artificial neural networks
CNN
Computer vision
Convolutional neural networks
Data mining
Datasets
Detection
EMP
Error analysis
Extended Morphology
Feature extraction
hyperspectral image
Hyperspectral imaging
Image processing
Imagery
Information processing
Methods
Morphology
Neural networks
Object detection
Object recognition
Principal component analysis
Salience
Salient object detection
spectral-spatial classification
Training
title CNN-based Salient Object Detection on Hyperspectral Images using Extended Morphology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CNN-based%20Salient%20Object%20Detection%20on%20Hyperspectral%20Images%20using%20Extended%20Morphology&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Chhapariya,%20Koushikey&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2022.3220601&rft_dat=%3Cproquest_cross%3E2739837453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-dbc55878cc4832c5b14a528febb28082c76086351c2dab3eca8bd4780ac38ac73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739837453&rft_id=info:pmid/&rft_ieee_id=9941145&rfr_iscdi=true