Loading…
Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images
Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | Li, Zengyi Li, Ligang Liu, Bo Cao, Yuan Zhou, Wenbo Ni, Wei Yang, Zhen |
description | Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error. |
doi_str_mv | 10.1109/LGRS.2023.3287037 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2023_3287037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10154039</ieee_id><sourcerecordid>2830417131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhosoOKcPIHgR8LrzJGma9FKmzsFQ2CZ4V9L2dHa2TU1axLc3ZRO8OufA9_8HviC4pjCjFJK71WK9mTFgfMaZksDlSTChQqgQhKSn4x6JUCTq_Ty4cG4PwCKl5CQwmw7z3uo6rFHbtmp3YaYdFmRrdetKYxu05AX7b2M_iT9J_4HkL0M2Q4c2tOhMPfSVaYkpyRob03sGW-fbyAPurC584bLRO3SXwVmpa4dXxzkN3p4et_PncPW6WM7vV2HOkqgPORSQqIjJpNAxh4RlTAgWA0KcUZmJWJVUMFRFUXCQCigrpKIoSy1yxr2GaXB76O2s-RrQ9eneDLb1L1OmOERUUk49RQ9Ubo1zFsu0s1Wj7U9KIR29pqPXdPSaHr36zM0hUyHiP94bBp7wX29EdEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830417131</pqid></control><display><type>article</type><title>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Zengyi ; Li, Ligang ; Liu, Bo ; Cao, Yuan ; Zhou, Wenbo ; Ni, Wei ; Yang, Zhen</creator><creatorcontrib>Li, Zengyi ; Li, Ligang ; Liu, Bo ; Cao, Yuan ; Zhou, Wenbo ; Ni, Wei ; Yang, Zhen</creatorcontrib><description>Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3287037</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Atmospheric effects ; Degradation ; Feature extraction ; Hyperspectral imaging ; Image degradation ; Image resolution ; Learning ; Mathematical models ; Methods ; Modules ; Remote sensing ; Root-mean-square errors ; spectral super-resolution ; spectral transformer ; spectral-response function ; Superresolution ; Task analysis ; Transformers</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</citedby><cites>FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</cites><orcidid>0000-0002-0790-9669 ; 0000-0003-3827-371X ; 0000-0002-0739-9080 ; 0000-0002-7532-2384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10154039$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Zengyi</creatorcontrib><creatorcontrib>Li, Ligang</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zhou, Wenbo</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><title>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error.</description><subject>Atmospheric effects</subject><subject>Degradation</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image degradation</subject><subject>Image resolution</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>spectral super-resolution</subject><subject>spectral transformer</subject><subject>spectral-response function</subject><subject>Superresolution</subject><subject>Task analysis</subject><subject>Transformers</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhosoOKcPIHgR8LrzJGma9FKmzsFQ2CZ4V9L2dHa2TU1axLc3ZRO8OufA9_8HviC4pjCjFJK71WK9mTFgfMaZksDlSTChQqgQhKSn4x6JUCTq_Ty4cG4PwCKl5CQwmw7z3uo6rFHbtmp3YaYdFmRrdetKYxu05AX7b2M_iT9J_4HkL0M2Q4c2tOhMPfSVaYkpyRob03sGW-fbyAPurC584bLRO3SXwVmpa4dXxzkN3p4et_PncPW6WM7vV2HOkqgPORSQqIjJpNAxh4RlTAgWA0KcUZmJWJVUMFRFUXCQCigrpKIoSy1yxr2GaXB76O2s-RrQ9eneDLb1L1OmOERUUk49RQ9Ubo1zFsu0s1Wj7U9KIR29pqPXdPSaHr36zM0hUyHiP94bBp7wX29EdEw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Zengyi</creator><creator>Li, Ligang</creator><creator>Liu, Bo</creator><creator>Cao, Yuan</creator><creator>Zhou, Wenbo</creator><creator>Ni, Wei</creator><creator>Yang, Zhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0790-9669</orcidid><orcidid>https://orcid.org/0000-0003-3827-371X</orcidid><orcidid>https://orcid.org/0000-0002-0739-9080</orcidid><orcidid>https://orcid.org/0000-0002-7532-2384</orcidid></search><sort><creationdate>20230101</creationdate><title>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</title><author>Li, Zengyi ; Li, Ligang ; Liu, Bo ; Cao, Yuan ; Zhou, Wenbo ; Ni, Wei ; Yang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric effects</topic><topic>Degradation</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image degradation</topic><topic>Image resolution</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>spectral super-resolution</topic><topic>spectral transformer</topic><topic>spectral-response function</topic><topic>Superresolution</topic><topic>Task analysis</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zengyi</creatorcontrib><creatorcontrib>Li, Ligang</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zhou, Wenbo</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zengyi</au><au>Li, Ligang</au><au>Liu, Bo</au><au>Cao, Yuan</au><au>Zhou, Wenbo</au><au>Ni, Wei</au><au>Yang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3287037</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0790-9669</orcidid><orcidid>https://orcid.org/0000-0003-3827-371X</orcidid><orcidid>https://orcid.org/0000-0002-0739-9080</orcidid><orcidid>https://orcid.org/0000-0002-7532-2384</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2023_3287037 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Atmospheric effects Degradation Feature extraction Hyperspectral imaging Image degradation Image resolution Learning Mathematical models Methods Modules Remote sensing Root-mean-square errors spectral super-resolution spectral transformer spectral-response function Superresolution Task analysis Transformers |
title | Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral-learning-based%20Transformer%20Network%20for%20the%20Spectral%20Super-resolution%20of%20Remote%20Sensing%20Degraded%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Li,%20Zengyi&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3287037&rft_dat=%3Cproquest_cross%3E2830417131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2830417131&rft_id=info:pmid/&rft_ieee_id=10154039&rfr_iscdi=true |