Loading…

Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images

Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1
Main Authors: Li, Zengyi, Li, Ligang, Liu, Bo, Cao, Yuan, Zhou, Wenbo, Ni, Wei, Yang, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023
cites cdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator Li, Zengyi
Li, Ligang
Liu, Bo
Cao, Yuan
Zhou, Wenbo
Ni, Wei
Yang, Zhen
description Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error.
doi_str_mv 10.1109/LGRS.2023.3287037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2023_3287037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10154039</ieee_id><sourcerecordid>2830417131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhosoOKcPIHgR8LrzJGma9FKmzsFQ2CZ4V9L2dHa2TU1axLc3ZRO8OufA9_8HviC4pjCjFJK71WK9mTFgfMaZksDlSTChQqgQhKSn4x6JUCTq_Ty4cG4PwCKl5CQwmw7z3uo6rFHbtmp3YaYdFmRrdetKYxu05AX7b2M_iT9J_4HkL0M2Q4c2tOhMPfSVaYkpyRob03sGW-fbyAPurC584bLRO3SXwVmpa4dXxzkN3p4et_PncPW6WM7vV2HOkqgPORSQqIjJpNAxh4RlTAgWA0KcUZmJWJVUMFRFUXCQCigrpKIoSy1yxr2GaXB76O2s-RrQ9eneDLb1L1OmOERUUk49RQ9Ubo1zFsu0s1Wj7U9KIR29pqPXdPSaHr36zM0hUyHiP94bBp7wX29EdEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830417131</pqid></control><display><type>article</type><title>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Zengyi ; Li, Ligang ; Liu, Bo ; Cao, Yuan ; Zhou, Wenbo ; Ni, Wei ; Yang, Zhen</creator><creatorcontrib>Li, Zengyi ; Li, Ligang ; Liu, Bo ; Cao, Yuan ; Zhou, Wenbo ; Ni, Wei ; Yang, Zhen</creatorcontrib><description>Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3287037</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Atmospheric effects ; Degradation ; Feature extraction ; Hyperspectral imaging ; Image degradation ; Image resolution ; Learning ; Mathematical models ; Methods ; Modules ; Remote sensing ; Root-mean-square errors ; spectral super-resolution ; spectral transformer ; spectral-response function ; Superresolution ; Task analysis ; Transformers</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</citedby><cites>FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</cites><orcidid>0000-0002-0790-9669 ; 0000-0003-3827-371X ; 0000-0002-0739-9080 ; 0000-0002-7532-2384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10154039$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Zengyi</creatorcontrib><creatorcontrib>Li, Ligang</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zhou, Wenbo</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><title>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error.</description><subject>Atmospheric effects</subject><subject>Degradation</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image degradation</subject><subject>Image resolution</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>spectral super-resolution</subject><subject>spectral transformer</subject><subject>spectral-response function</subject><subject>Superresolution</subject><subject>Task analysis</subject><subject>Transformers</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhosoOKcPIHgR8LrzJGma9FKmzsFQ2CZ4V9L2dHa2TU1axLc3ZRO8OufA9_8HviC4pjCjFJK71WK9mTFgfMaZksDlSTChQqgQhKSn4x6JUCTq_Ty4cG4PwCKl5CQwmw7z3uo6rFHbtmp3YaYdFmRrdetKYxu05AX7b2M_iT9J_4HkL0M2Q4c2tOhMPfSVaYkpyRob03sGW-fbyAPurC584bLRO3SXwVmpa4dXxzkN3p4et_PncPW6WM7vV2HOkqgPORSQqIjJpNAxh4RlTAgWA0KcUZmJWJVUMFRFUXCQCigrpKIoSy1yxr2GaXB76O2s-RrQ9eneDLb1L1OmOERUUk49RQ9Ubo1zFsu0s1Wj7U9KIR29pqPXdPSaHr36zM0hUyHiP94bBp7wX29EdEw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Zengyi</creator><creator>Li, Ligang</creator><creator>Liu, Bo</creator><creator>Cao, Yuan</creator><creator>Zhou, Wenbo</creator><creator>Ni, Wei</creator><creator>Yang, Zhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0790-9669</orcidid><orcidid>https://orcid.org/0000-0003-3827-371X</orcidid><orcidid>https://orcid.org/0000-0002-0739-9080</orcidid><orcidid>https://orcid.org/0000-0002-7532-2384</orcidid></search><sort><creationdate>20230101</creationdate><title>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</title><author>Li, Zengyi ; Li, Ligang ; Liu, Bo ; Cao, Yuan ; Zhou, Wenbo ; Ni, Wei ; Yang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric effects</topic><topic>Degradation</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image degradation</topic><topic>Image resolution</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>spectral super-resolution</topic><topic>spectral transformer</topic><topic>spectral-response function</topic><topic>Superresolution</topic><topic>Task analysis</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zengyi</creatorcontrib><creatorcontrib>Li, Ligang</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Zhou, Wenbo</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zengyi</au><au>Li, Ligang</au><au>Liu, Bo</au><au>Cao, Yuan</au><au>Zhou, Wenbo</au><au>Ni, Wei</au><au>Yang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral images (HSIs) are widely used as data formats for remote sensing. Correspondingly, the spectral super-resolution (SSR) technique used to generate high-spatial-resolution HSIs from high-spatial-resolution remote sensing multispectral images (MSIs) has emerged as a popular research topic owing to its high costs and hardware requirements. Generally, existing SSR methods obtain an HSI from the MSI of natural scenes. However, these methods barely learn the complex spectra found in remote sensing images and lack effective treatments for the degradation phenomenon in remote sensing scenes. In this study, a spectral-learning-based transformer network composed of a spectral-response-function (SRF)-guided multilevel feature extraction module (MFEM) and spectral nonlinear mapping learning module (NMLM) is cascaded. The NMLM uses different blocks to gradually learn spatial and spectral information from remote sensing images. Additionally, we focus on atmospheric effects and other factors that influence the generation of remote sensing images and design an MFEM to eliminate these effects. To augment the spectral dimension, an SRF is precisely added to the MFEM as a guide. Experimental results on the Obita Hyperspectral Satellites, Pavia Center, and Washington DC Mall datasets reveal that our method outperforms other state-of-the-art methods in terms of the root mean square error, mean relative absolute error, and relative root mean square error.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3287037</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0790-9669</orcidid><orcidid>https://orcid.org/0000-0003-3827-371X</orcidid><orcidid>https://orcid.org/0000-0002-0739-9080</orcidid><orcidid>https://orcid.org/0000-0002-7532-2384</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2023_3287037
source IEEE Electronic Library (IEL) Journals
subjects Atmospheric effects
Degradation
Feature extraction
Hyperspectral imaging
Image degradation
Image resolution
Learning
Mathematical models
Methods
Modules
Remote sensing
Root-mean-square errors
spectral super-resolution
spectral transformer
spectral-response function
Superresolution
Task analysis
Transformers
title Spectral-learning-based Transformer Network for the Spectral Super-resolution of Remote Sensing Degraded Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral-learning-based%20Transformer%20Network%20for%20the%20Spectral%20Super-resolution%20of%20Remote%20Sensing%20Degraded%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Li,%20Zengyi&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3287037&rft_dat=%3Cproquest_cross%3E2830417131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-30d0984279da63092b255260e06b17b568f152e8ddd3078012d781e7fa5c23023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2830417131&rft_id=info:pmid/&rft_ieee_id=10154039&rfr_iscdi=true