Loading…
Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery
The real-time teleoperation or telemanipulation of redundant snakelike robots for minimally invasive surgery in a master-slave configuration is a complex problem. There are many possible mappings between a master's standard 6 degrees of freedom (DOF) and a redundant slave robot, typically with...
Saved in:
Published in: | IEEE robotics and automation letters 2018-07, Vol.3 (3), p.2501-2508 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The real-time teleoperation or telemanipulation of redundant snakelike robots for minimally invasive surgery in a master-slave configuration is a complex problem. There are many possible mappings between a master's standard 6 degrees of freedom (DOF) and a redundant slave robot, typically with n ≫ 6 DOF. This letter introduces a snakelike robot for ear, nose, and throat surgery. The robot's architecture is comprised of n = 26 joint variables. Six different control methods were investigated. The methods are compared through simulation with a user study. Each participant performed the same task using each of the six different control methods. Based on the metrics selected, the sparse pseudo-L 0 and our proposed approach performed better in terms of intuitiveness, real-time capabilities, and overall occupied volume. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2018.2812907 |