Loading…

Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery

The real-time teleoperation or telemanipulation of redundant snakelike robots for minimally invasive surgery in a master-slave configuration is a complex problem. There are many possible mappings between a master's standard 6 degrees of freedom (DOF) and a redundant slave robot, typically with...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2018-07, Vol.3 (3), p.2501-2508
Main Authors: Berthet-Rayne, Pierre, Leibrandt, Konrad, Gras, Gauthier, Fraisse, Philippe, Crosnier, Andre, Guang-Zhong Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-40f3fea2a6a750a58123729e9f20276a65e1cc9effc65139f7ad3dd022cd01db3
cites cdi_FETCH-LOGICAL-c327t-40f3fea2a6a750a58123729e9f20276a65e1cc9effc65139f7ad3dd022cd01db3
container_end_page 2508
container_issue 3
container_start_page 2501
container_title IEEE robotics and automation letters
container_volume 3
creator Berthet-Rayne, Pierre
Leibrandt, Konrad
Gras, Gauthier
Fraisse, Philippe
Crosnier, Andre
Guang-Zhong Yang
description The real-time teleoperation or telemanipulation of redundant snakelike robots for minimally invasive surgery in a master-slave configuration is a complex problem. There are many possible mappings between a master's standard 6 degrees of freedom (DOF) and a redundant slave robot, typically with n ≫ 6 DOF. This letter introduces a snakelike robot for ear, nose, and throat surgery. The robot's architecture is comprised of n = 26 joint variables. Six different control methods were investigated. The methods are compared through simulation with a user study. Each participant performed the same task using each of the six different control methods. Based on the metrics selected, the sparse pseudo-L 0 and our proposed approach performed better in terms of intuitiveness, real-time capabilities, and overall occupied volume.
doi_str_mv 10.1109/LRA.2018.2812907
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2018_2812907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8307404</ieee_id><sourcerecordid>2299370941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-40f3fea2a6a750a58123729e9f20276a65e1cc9effc65139f7ad3dd022cd01db3</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRsFTvgpeAR2mdJN1Ncyz1o8UtQtVziLuTNrqbrMluof_eLRXxNHN43pcZniS5ojCmFORdvp6NGdDpmE0pkyBOkgHjQoy4yLLTf_t5chnjJwDQlAku00HSLN0OQ0TybB3WurVFJHPv2uArssJ268tIjA9kjWXnSu1a8ur0F1b2C8naf_iWvGGFvsHQZ70j912wbkNW1tlaV9We9P062h2S1y5sMOwvkjOjq4iXv3OYvD8-vM0Xo_zlaTmf5aOCM9GOJmC4Qc10pkUKOu3_4oJJlIYBE5nOUqRFIdGYIkspl0bokpclMFaUQMsPPkxuj71bXakm9NeEvfLaqsUsV5UNda2AQUY5Fzva0zdHugn-u8PYqk_fBdcfqBiTkguQkwMFR6oIPsaA5q-YgjqIUL0IdRChfkX0ketjxCLiHz7lICYw4T997oTW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299370941</pqid></control><display><type>article</type><title>Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Berthet-Rayne, Pierre ; Leibrandt, Konrad ; Gras, Gauthier ; Fraisse, Philippe ; Crosnier, Andre ; Guang-Zhong Yang</creator><creatorcontrib>Berthet-Rayne, Pierre ; Leibrandt, Konrad ; Gras, Gauthier ; Fraisse, Philippe ; Crosnier, Andre ; Guang-Zhong Yang</creatorcontrib><description>The real-time teleoperation or telemanipulation of redundant snakelike robots for minimally invasive surgery in a master-slave configuration is a complex problem. There are many possible mappings between a master's standard 6 degrees of freedom (DOF) and a redundant slave robot, typically with n ≫ 6 DOF. This letter introduces a snakelike robot for ear, nose, and throat surgery. The robot's architecture is comprised of n = 26 joint variables. Six different control methods were investigated. The methods are compared through simulation with a user study. Each participant performed the same task using each of the six different control methods. Based on the metrics selected, the sparse pseudo-L 0 and our proposed approach performed better in terms of intuitiveness, real-time capabilities, and overall occupied volume.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2018.2812907</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic ; Control methods ; Degrees of freedom ; DH-HEMTs ; Engineering Sciences ; Inverse kinematics ; Jacobian matrices ; Joints ; Kinematics ; Laparoscopy ; Medical robots and systems ; Navigation ; Real time ; Redundancy ; redundant robots ; Robots ; Surgery ; surgical robotics: laparoscopy ; telerobotics and teleoperation ; Telesurgery ; tendon/wire mechanism</subject><ispartof>IEEE robotics and automation letters, 2018-07, Vol.3 (3), p.2501-2508</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-40f3fea2a6a750a58123729e9f20276a65e1cc9effc65139f7ad3dd022cd01db3</citedby><cites>FETCH-LOGICAL-c327t-40f3fea2a6a750a58123729e9f20276a65e1cc9effc65139f7ad3dd022cd01db3</cites><orcidid>0000-0002-7719-083X ; 0000-0003-0911-0743 ; 0000-0001-7632-0922 ; 0000-0001-9118-4877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8307404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-02061337$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthet-Rayne, Pierre</creatorcontrib><creatorcontrib>Leibrandt, Konrad</creatorcontrib><creatorcontrib>Gras, Gauthier</creatorcontrib><creatorcontrib>Fraisse, Philippe</creatorcontrib><creatorcontrib>Crosnier, Andre</creatorcontrib><creatorcontrib>Guang-Zhong Yang</creatorcontrib><title>Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The real-time teleoperation or telemanipulation of redundant snakelike robots for minimally invasive surgery in a master-slave configuration is a complex problem. There are many possible mappings between a master's standard 6 degrees of freedom (DOF) and a redundant slave robot, typically with n ≫ 6 DOF. This letter introduces a snakelike robot for ear, nose, and throat surgery. The robot's architecture is comprised of n = 26 joint variables. Six different control methods were investigated. The methods are compared through simulation with a user study. Each participant performed the same task using each of the six different control methods. Based on the metrics selected, the sparse pseudo-L 0 and our proposed approach performed better in terms of intuitiveness, real-time capabilities, and overall occupied volume.</description><subject>Automatic</subject><subject>Control methods</subject><subject>Degrees of freedom</subject><subject>DH-HEMTs</subject><subject>Engineering Sciences</subject><subject>Inverse kinematics</subject><subject>Jacobian matrices</subject><subject>Joints</subject><subject>Kinematics</subject><subject>Laparoscopy</subject><subject>Medical robots and systems</subject><subject>Navigation</subject><subject>Real time</subject><subject>Redundancy</subject><subject>redundant robots</subject><subject>Robots</subject><subject>Surgery</subject><subject>surgical robotics: laparoscopy</subject><subject>telerobotics and teleoperation</subject><subject>Telesurgery</subject><subject>tendon/wire mechanism</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkU1LAzEQhhdRsFTvgpeAR2mdJN1Ncyz1o8UtQtVziLuTNrqbrMluof_eLRXxNHN43pcZniS5ojCmFORdvp6NGdDpmE0pkyBOkgHjQoy4yLLTf_t5chnjJwDQlAku00HSLN0OQ0TybB3WurVFJHPv2uArssJ268tIjA9kjWXnSu1a8ur0F1b2C8naf_iWvGGFvsHQZ70j912wbkNW1tlaV9We9P062h2S1y5sMOwvkjOjq4iXv3OYvD8-vM0Xo_zlaTmf5aOCM9GOJmC4Qc10pkUKOu3_4oJJlIYBE5nOUqRFIdGYIkspl0bokpclMFaUQMsPPkxuj71bXakm9NeEvfLaqsUsV5UNda2AQUY5Fzva0zdHugn-u8PYqk_fBdcfqBiTkguQkwMFR6oIPsaA5q-YgjqIUL0IdRChfkX0ketjxCLiHz7lICYw4T997oTW</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Berthet-Rayne, Pierre</creator><creator>Leibrandt, Konrad</creator><creator>Gras, Gauthier</creator><creator>Fraisse, Philippe</creator><creator>Crosnier, Andre</creator><creator>Guang-Zhong Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7719-083X</orcidid><orcidid>https://orcid.org/0000-0003-0911-0743</orcidid><orcidid>https://orcid.org/0000-0001-7632-0922</orcidid><orcidid>https://orcid.org/0000-0001-9118-4877</orcidid></search><sort><creationdate>20180701</creationdate><title>Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery</title><author>Berthet-Rayne, Pierre ; Leibrandt, Konrad ; Gras, Gauthier ; Fraisse, Philippe ; Crosnier, Andre ; Guang-Zhong Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-40f3fea2a6a750a58123729e9f20276a65e1cc9effc65139f7ad3dd022cd01db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automatic</topic><topic>Control methods</topic><topic>Degrees of freedom</topic><topic>DH-HEMTs</topic><topic>Engineering Sciences</topic><topic>Inverse kinematics</topic><topic>Jacobian matrices</topic><topic>Joints</topic><topic>Kinematics</topic><topic>Laparoscopy</topic><topic>Medical robots and systems</topic><topic>Navigation</topic><topic>Real time</topic><topic>Redundancy</topic><topic>redundant robots</topic><topic>Robots</topic><topic>Surgery</topic><topic>surgical robotics: laparoscopy</topic><topic>telerobotics and teleoperation</topic><topic>Telesurgery</topic><topic>tendon/wire mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthet-Rayne, Pierre</creatorcontrib><creatorcontrib>Leibrandt, Konrad</creatorcontrib><creatorcontrib>Gras, Gauthier</creatorcontrib><creatorcontrib>Fraisse, Philippe</creatorcontrib><creatorcontrib>Crosnier, Andre</creatorcontrib><creatorcontrib>Guang-Zhong Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthet-Rayne, Pierre</au><au>Leibrandt, Konrad</au><au>Gras, Gauthier</au><au>Fraisse, Philippe</au><au>Crosnier, Andre</au><au>Guang-Zhong Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>2501</spage><epage>2508</epage><pages>2501-2508</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The real-time teleoperation or telemanipulation of redundant snakelike robots for minimally invasive surgery in a master-slave configuration is a complex problem. There are many possible mappings between a master's standard 6 degrees of freedom (DOF) and a redundant slave robot, typically with n ≫ 6 DOF. This letter introduces a snakelike robot for ear, nose, and throat surgery. The robot's architecture is comprised of n = 26 joint variables. Six different control methods were investigated. The methods are compared through simulation with a user study. Each participant performed the same task using each of the six different control methods. Based on the metrics selected, the sparse pseudo-L 0 and our proposed approach performed better in terms of intuitiveness, real-time capabilities, and overall occupied volume.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2018.2812907</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7719-083X</orcidid><orcidid>https://orcid.org/0000-0003-0911-0743</orcidid><orcidid>https://orcid.org/0000-0001-7632-0922</orcidid><orcidid>https://orcid.org/0000-0001-9118-4877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2018-07, Vol.3 (3), p.2501-2508
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2018_2812907
source IEEE Electronic Library (IEL) Journals
subjects Automatic
Control methods
Degrees of freedom
DH-HEMTs
Engineering Sciences
Inverse kinematics
Jacobian matrices
Joints
Kinematics
Laparoscopy
Medical robots and systems
Navigation
Real time
Redundancy
redundant robots
Robots
Surgery
surgical robotics: laparoscopy
telerobotics and teleoperation
Telesurgery
tendon/wire mechanism
title Inverse Kinematics Control Methods for Redundant Snakelike Robot Teleoperation During Minimally Invasive Surgery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Kinematics%20Control%20Methods%20for%20Redundant%20Snakelike%20Robot%20Teleoperation%20During%20Minimally%20Invasive%20Surgery&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Berthet-Rayne,%20Pierre&rft.date=2018-07-01&rft.volume=3&rft.issue=3&rft.spage=2501&rft.epage=2508&rft.pages=2501-2508&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2018.2812907&rft_dat=%3Cproquest_cross%3E2299370941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-40f3fea2a6a750a58123729e9f20276a65e1cc9effc65139f7ad3dd022cd01db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299370941&rft_id=info:pmid/&rft_ieee_id=8307404&rfr_iscdi=true