Loading…
Robust 3D Tracking Control of an Underactuated Autonomous Airship
The letter presents a new, robust control algorithm for position trajectory tracking in a 3D space, dedicated to underactuated airships. In order to take into account real characteristics of such vehicles, and to reflect practically motivated constraints, the algorithm assumes a highly uncertain sys...
Saved in:
Published in: | IEEE robotics and automation letters 2020-07, Vol.5 (3), p.4281-4288 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The letter presents a new, robust control algorithm for position trajectory tracking in a 3D space, dedicated to underactuated airships. In order to take into account real characteristics of such vehicles, and to reflect practically motivated constraints, the algorithm assumes a highly uncertain system dynamics model. The tracking problem is solved in a uniform way, without dividing it into subtasks considered in 2D spaces, thanks to the introduction of an auxiliary tracking error. The proposed controller is based on the sliding mode approach. Its stability is investigated using Lyapunov theorem. Numerical simulations are conducted in order to verify properties of a closed-loop system for a generic model of the airship. Performance of the control system is examined via experiments in various scenarios using a prototype airship. The obtained results indicate that the control objectives are satisfied in practice with a reasonable accuracy. Moreover, it is shown that the controller is robust to some bounded additive measurement perturbations and delays in the control loop. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2020.2994484 |