Loading…
High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning
The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance raci...
Saved in:
Published in: | IEEE robotics and automation letters 2023-09, Vol.8 (9), p.1-7 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683 |
container_end_page | 7 |
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Evans, Benjamin David Engelbrecht, Herman Arnold Jordaan, Hendrik Willem |
description | The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory. |
doi_str_mv | 10.1109/LRA.2023.3295252 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2023_3295252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10182327</ieee_id><sourcerecordid>2839526771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</originalsourceid><addsrcrecordid>eNpNkDtrwzAQgEVpoSHN3qGDobNTPdBrDOkjAUMgpLOQpXPq0FiuZA_591VIhix3x_HdHfch9EzwnBCs36rtYk4xZXNGNaec3qEJZVKWTApxf1M_ollKB4wx4VQyzSdos2r3P2XqAXyxGIfQhWMYU7G1ru32xZjOcRftAdwQ4qm0rc_gO0BfbKHtmhAdHKEbigps7DL8hB4a-5tgds1T9P35sVuuymrztV4uqtJRTYfSKUwar5Uj1GssHPfK1QrLBpSvufesBiW9UJZrxxqrdS0E48CUbkid-2yKXi97-xj-RkiDOYQxdvmkoSp_RoWUJFP4QrkYUorQmD62RxtPhmBzNmeyOXM2Z67m8sjLZaQFgBucKMqys3-yQmoe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839526771</pqid></control><display><type>article</type><title>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</title><source>IEEE Xplore (Online service)</source><creator>Evans, Benjamin David ; Engelbrecht, Herman Arnold ; Jordaan, Hendrik Willem</creator><creatorcontrib>Evans, Benjamin David ; Engelbrecht, Herman Arnold ; Jordaan, Hendrik Willem</creatorcontrib><description>The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3295252</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accidents ; Algorithms ; Deep learning ; Deep Learning Methods ; High speed rail ; Laser radar ; Machine Learning for Robot Control ; Racing ; Radar tracking ; Reinforcement learning ; Sensors ; Trajectory ; Trajectory optimization</subject><ispartof>IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</citedby><cites>FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</cites><orcidid>0000-0001-8753-8994 ; 0000-0002-6466-6456 ; 0000-0001-6312-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10182327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Evans, Benjamin David</creatorcontrib><creatorcontrib>Engelbrecht, Herman Arnold</creatorcontrib><creatorcontrib>Jordaan, Hendrik Willem</creatorcontrib><title>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Deep learning</subject><subject>Deep Learning Methods</subject><subject>High speed rail</subject><subject>Laser radar</subject><subject>Machine Learning for Robot Control</subject><subject>Racing</subject><subject>Radar tracking</subject><subject>Reinforcement learning</subject><subject>Sensors</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtrwzAQgEVpoSHN3qGDobNTPdBrDOkjAUMgpLOQpXPq0FiuZA_591VIhix3x_HdHfch9EzwnBCs36rtYk4xZXNGNaec3qEJZVKWTApxf1M_ollKB4wx4VQyzSdos2r3P2XqAXyxGIfQhWMYU7G1ru32xZjOcRftAdwQ4qm0rc_gO0BfbKHtmhAdHKEbigps7DL8hB4a-5tgds1T9P35sVuuymrztV4uqtJRTYfSKUwar5Uj1GssHPfK1QrLBpSvufesBiW9UJZrxxqrdS0E48CUbkid-2yKXi97-xj-RkiDOYQxdvmkoSp_RoWUJFP4QrkYUorQmD62RxtPhmBzNmeyOXM2Z67m8sjLZaQFgBucKMqys3-yQmoe</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Evans, Benjamin David</creator><creator>Engelbrecht, Herman Arnold</creator><creator>Jordaan, Hendrik Willem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8753-8994</orcidid><orcidid>https://orcid.org/0000-0002-6466-6456</orcidid><orcidid>https://orcid.org/0000-0001-6312-1203</orcidid></search><sort><creationdate>20230901</creationdate><title>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</title><author>Evans, Benjamin David ; Engelbrecht, Herman Arnold ; Jordaan, Hendrik Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Deep learning</topic><topic>Deep Learning Methods</topic><topic>High speed rail</topic><topic>Laser radar</topic><topic>Machine Learning for Robot Control</topic><topic>Racing</topic><topic>Radar tracking</topic><topic>Reinforcement learning</topic><topic>Sensors</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Benjamin David</creatorcontrib><creatorcontrib>Engelbrecht, Herman Arnold</creatorcontrib><creatorcontrib>Jordaan, Hendrik Willem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Benjamin David</au><au>Engelbrecht, Herman Arnold</au><au>Jordaan, Hendrik Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>8</volume><issue>9</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3295252</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8753-8994</orcidid><orcidid>https://orcid.org/0000-0002-6466-6456</orcidid><orcidid>https://orcid.org/0000-0001-6312-1203</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-7 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LRA_2023_3295252 |
source | IEEE Xplore (Online service) |
subjects | Accidents Algorithms Deep learning Deep Learning Methods High speed rail Laser radar Machine Learning for Robot Control Racing Radar tracking Reinforcement learning Sensors Trajectory Trajectory optimization |
title | High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed%20Autonomous%20Racing%20using%20Trajectory-aided%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Evans,%20Benjamin%20David&rft.date=2023-09-01&rft.volume=8&rft.issue=9&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3295252&rft_dat=%3Cproquest_cross%3E2839526771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839526771&rft_id=info:pmid/&rft_ieee_id=10182327&rfr_iscdi=true |