Loading…

High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning

The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance raci...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2023-09, Vol.8 (9), p.1-7
Main Authors: Evans, Benjamin David, Engelbrecht, Herman Arnold, Jordaan, Hendrik Willem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683
cites cdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683
container_end_page 7
container_issue 9
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 8
creator Evans, Benjamin David
Engelbrecht, Herman Arnold
Jordaan, Hendrik Willem
description The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory.
doi_str_mv 10.1109/LRA.2023.3295252
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LRA_2023_3295252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10182327</ieee_id><sourcerecordid>2839526771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</originalsourceid><addsrcrecordid>eNpNkDtrwzAQgEVpoSHN3qGDobNTPdBrDOkjAUMgpLOQpXPq0FiuZA_591VIhix3x_HdHfch9EzwnBCs36rtYk4xZXNGNaec3qEJZVKWTApxf1M_ollKB4wx4VQyzSdos2r3P2XqAXyxGIfQhWMYU7G1ru32xZjOcRftAdwQ4qm0rc_gO0BfbKHtmhAdHKEbigps7DL8hB4a-5tgds1T9P35sVuuymrztV4uqtJRTYfSKUwar5Uj1GssHPfK1QrLBpSvufesBiW9UJZrxxqrdS0E48CUbkid-2yKXi97-xj-RkiDOYQxdvmkoSp_RoWUJFP4QrkYUorQmD62RxtPhmBzNmeyOXM2Z67m8sjLZaQFgBucKMqys3-yQmoe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839526771</pqid></control><display><type>article</type><title>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</title><source>IEEE Xplore (Online service)</source><creator>Evans, Benjamin David ; Engelbrecht, Herman Arnold ; Jordaan, Hendrik Willem</creator><creatorcontrib>Evans, Benjamin David ; Engelbrecht, Herman Arnold ; Jordaan, Hendrik Willem</creatorcontrib><description>The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3295252</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accidents ; Algorithms ; Deep learning ; Deep Learning Methods ; High speed rail ; Laser radar ; Machine Learning for Robot Control ; Racing ; Radar tracking ; Reinforcement learning ; Sensors ; Trajectory ; Trajectory optimization</subject><ispartof>IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</citedby><cites>FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</cites><orcidid>0000-0001-8753-8994 ; 0000-0002-6466-6456 ; 0000-0001-6312-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10182327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Evans, Benjamin David</creatorcontrib><creatorcontrib>Engelbrecht, Herman Arnold</creatorcontrib><creatorcontrib>Jordaan, Hendrik Willem</creatorcontrib><title>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Deep learning</subject><subject>Deep Learning Methods</subject><subject>High speed rail</subject><subject>Laser radar</subject><subject>Machine Learning for Robot Control</subject><subject>Racing</subject><subject>Radar tracking</subject><subject>Reinforcement learning</subject><subject>Sensors</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtrwzAQgEVpoSHN3qGDobNTPdBrDOkjAUMgpLOQpXPq0FiuZA_591VIhix3x_HdHfch9EzwnBCs36rtYk4xZXNGNaec3qEJZVKWTApxf1M_ollKB4wx4VQyzSdos2r3P2XqAXyxGIfQhWMYU7G1ru32xZjOcRftAdwQ4qm0rc_gO0BfbKHtmhAdHKEbigps7DL8hB4a-5tgds1T9P35sVuuymrztV4uqtJRTYfSKUwar5Uj1GssHPfK1QrLBpSvufesBiW9UJZrxxqrdS0E48CUbkid-2yKXi97-xj-RkiDOYQxdvmkoSp_RoWUJFP4QrkYUorQmD62RxtPhmBzNmeyOXM2Z67m8sjLZaQFgBucKMqys3-yQmoe</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Evans, Benjamin David</creator><creator>Engelbrecht, Herman Arnold</creator><creator>Jordaan, Hendrik Willem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8753-8994</orcidid><orcidid>https://orcid.org/0000-0002-6466-6456</orcidid><orcidid>https://orcid.org/0000-0001-6312-1203</orcidid></search><sort><creationdate>20230901</creationdate><title>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</title><author>Evans, Benjamin David ; Engelbrecht, Herman Arnold ; Jordaan, Hendrik Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Deep learning</topic><topic>Deep Learning Methods</topic><topic>High speed rail</topic><topic>Laser radar</topic><topic>Machine Learning for Robot Control</topic><topic>Racing</topic><topic>Radar tracking</topic><topic>Reinforcement learning</topic><topic>Sensors</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Benjamin David</creatorcontrib><creatorcontrib>Engelbrecht, Herman Arnold</creatorcontrib><creatorcontrib>Jordaan, Hendrik Willem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Benjamin David</au><au>Engelbrecht, Herman Arnold</au><au>Jordaan, Hendrik Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>8</volume><issue>9</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The classical method of autonomous racing uses real-time localisation to follow a precalculated optimal trajectory. In contrast, end-to-end deep reinforcement learning (DRL) can train agents to race using only raw LiDAR scans. While classical methods prioritise optimization for high-performance racing, DRL approaches have focused on low-performance contexts with little consideration of the speed profile. This work addresses the problem of using end-to-end DRL agents for high-speed autonomous racing. We present trajectory-aided learning (TAL) that trains DRL agents for high-performance racing by incorporating the optimal trajectory (racing line) into the learning formulation. Our method is evaluated using the TD3 algorithm on four maps in the open-source F1Tenth simulator. The results demonstrate that our method achieves a significantly higher lap completion rate at high speeds compared to the baseline. This is due to TAL training the agent to select a feasible speed profile of slowing down in the corners and roughly tracking the optimal trajectory.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3295252</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8753-8994</orcidid><orcidid>https://orcid.org/0000-0002-6466-6456</orcidid><orcidid>https://orcid.org/0000-0001-6312-1203</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-09, Vol.8 (9), p.1-7
issn 2377-3766
2377-3766
language eng
recordid cdi_crossref_primary_10_1109_LRA_2023_3295252
source IEEE Xplore (Online service)
subjects Accidents
Algorithms
Deep learning
Deep Learning Methods
High speed rail
Laser radar
Machine Learning for Robot Control
Racing
Radar tracking
Reinforcement learning
Sensors
Trajectory
Trajectory optimization
title High-speed Autonomous Racing using Trajectory-aided Deep Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-speed%20Autonomous%20Racing%20using%20Trajectory-aided%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Evans,%20Benjamin%20David&rft.date=2023-09-01&rft.volume=8&rft.issue=9&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3295252&rft_dat=%3Cproquest_cross%3E2839526771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-c801fd98c12d906c5d8cb807fe8db5dd3be87d68a59c3fa99b6635e389f1bd683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839526771&rft_id=info:pmid/&rft_ieee_id=10182327&rfr_iscdi=true