Loading…
A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs
Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different ca...
Saved in:
Published in: | IEEE sensors letters 2018-03, Vol.2 (1), p.1-4 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813 |
container_end_page | 4 |
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 2 |
creator | Worsey, Matthew T. O. Pahl, Rebecca Thiel, David V. Milburn, Peter D. |
description | Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p > 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes. |
doi_str_mv | 10.1109/LSENS.2018.2804893 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2018_2804893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8289326</ieee_id><sourcerecordid>2299479150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiQT5A3pp4nmxH0s_jgRRSUAPiEeb7u6sFmGLbYnh37t8xHiZmabPO8k8CF1T0qeU6LvpfPw87zNCVZ8pkivNz1CH5XKQ0Vyy83_zJerFuCSkRZkknHTQ-xCP_Hpjg4u-wb4-vLbJJucbu8IzSJ--ijh5fA8Jwto1gCdNCjam4L8Av8HKly7tsGvw_MetW-ADL-K-TmaLeIUuaruK0Dv1Llo8jF9HT9n05XEyGk6zkud5yqDWVldWFJxSqgjwgsmSSwZMUEGIUkQqlleqEpKWRVHQAdUSuBVWCFspyrvo9rh3E_z3FmIyS78N7QXRMKZ1LjUdkJZiR6oMPsYAtdkEt7ZhZygxe5XmoNLsVZqTyjZ0cww5APgLKNb-McF_AXo1byw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299479150</pqid></control><display><type>article</type><title>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Worsey, Matthew T. O. ; Pahl, Rebecca ; Thiel, David V. ; Milburn, Peter D.</creator><creatorcontrib>Worsey, Matthew T. O. ; Pahl, Rebecca ; Thiel, David V. ; Milburn, Peter D.</creatorcontrib><description>Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p > 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2018.2804893</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; AHRS ; Analysis of variance ; Athletes ; Australia ; backstroke ; breaststroke ; freestyle ; IMUs ; intra-stroke variation ; Monitoring ; Reference systems ; Sensor phenomena ; Sensors ; swim velocity ; Swimming ; Three axis ; Timing ; Training ; Velocity ; velocity algorithm ; Velocity distribution</subject><ispartof>IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</citedby><cites>FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</cites><orcidid>0000-0002-8499-545X ; 0000-0002-6052-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8289326$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Worsey, Matthew T. O.</creatorcontrib><creatorcontrib>Pahl, Rebecca</creatorcontrib><creatorcontrib>Thiel, David V.</creatorcontrib><creatorcontrib>Milburn, Peter D.</creatorcontrib><title>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p > 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes.</description><subject>Acceleration</subject><subject>AHRS</subject><subject>Analysis of variance</subject><subject>Athletes</subject><subject>Australia</subject><subject>backstroke</subject><subject>breaststroke</subject><subject>freestyle</subject><subject>IMUs</subject><subject>intra-stroke variation</subject><subject>Monitoring</subject><subject>Reference systems</subject><subject>Sensor phenomena</subject><subject>Sensors</subject><subject>swim velocity</subject><subject>Swimming</subject><subject>Three axis</subject><subject>Timing</subject><subject>Training</subject><subject>Velocity</subject><subject>velocity algorithm</subject><subject>Velocity distribution</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1PAjEQhhujiQT5A3pp4nmxH0s_jgRRSUAPiEeb7u6sFmGLbYnh37t8xHiZmabPO8k8CF1T0qeU6LvpfPw87zNCVZ8pkivNz1CH5XKQ0Vyy83_zJerFuCSkRZkknHTQ-xCP_Hpjg4u-wb4-vLbJJucbu8IzSJ--ijh5fA8Jwto1gCdNCjam4L8Av8HKly7tsGvw_MetW-ADL-K-TmaLeIUuaruK0Dv1Llo8jF9HT9n05XEyGk6zkud5yqDWVldWFJxSqgjwgsmSSwZMUEGIUkQqlleqEpKWRVHQAdUSuBVWCFspyrvo9rh3E_z3FmIyS78N7QXRMKZ1LjUdkJZiR6oMPsYAtdkEt7ZhZygxe5XmoNLsVZqTyjZ0cww5APgLKNb-McF_AXo1byw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Worsey, Matthew T. O.</creator><creator>Pahl, Rebecca</creator><creator>Thiel, David V.</creator><creator>Milburn, Peter D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8499-545X</orcidid><orcidid>https://orcid.org/0000-0002-6052-9227</orcidid></search><sort><creationdate>20180301</creationdate><title>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</title><author>Worsey, Matthew T. O. ; Pahl, Rebecca ; Thiel, David V. ; Milburn, Peter D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>AHRS</topic><topic>Analysis of variance</topic><topic>Athletes</topic><topic>Australia</topic><topic>backstroke</topic><topic>breaststroke</topic><topic>freestyle</topic><topic>IMUs</topic><topic>intra-stroke variation</topic><topic>Monitoring</topic><topic>Reference systems</topic><topic>Sensor phenomena</topic><topic>Sensors</topic><topic>swim velocity</topic><topic>Swimming</topic><topic>Three axis</topic><topic>Timing</topic><topic>Training</topic><topic>Velocity</topic><topic>velocity algorithm</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worsey, Matthew T. O.</creatorcontrib><creatorcontrib>Pahl, Rebecca</creatorcontrib><creatorcontrib>Thiel, David V.</creatorcontrib><creatorcontrib>Milburn, Peter D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worsey, Matthew T. O.</au><au>Pahl, Rebecca</au><au>Thiel, David V.</au><au>Milburn, Peter D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p > 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2018.2804893</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8499-545X</orcidid><orcidid>https://orcid.org/0000-0002-6052-9227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSENS_2018_2804893 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration AHRS Analysis of variance Athletes Australia backstroke breaststroke freestyle IMUs intra-stroke variation Monitoring Reference systems Sensor phenomena Sensors swim velocity Swimming Three axis Timing Training Velocity velocity algorithm Velocity distribution |
title | A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Computational%20Methods%20to%20Determine%20Intrastroke%20Velocity%20in%20Swimming%20Using%20IMUs&rft.jtitle=IEEE%20sensors%20letters&rft.au=Worsey,%20Matthew%20T.%20O.&rft.date=2018-03-01&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2018.2804893&rft_dat=%3Cproquest_cross%3E2299479150%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299479150&rft_id=info:pmid/&rft_ieee_id=8289326&rfr_iscdi=true |