Loading…

A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs

Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different ca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors letters 2018-03, Vol.2 (1), p.1-4
Main Authors: Worsey, Matthew T. O., Pahl, Rebecca, Thiel, David V., Milburn, Peter D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813
cites cdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813
container_end_page 4
container_issue 1
container_start_page 1
container_title IEEE sensors letters
container_volume 2
creator Worsey, Matthew T. O.
Pahl, Rebecca
Thiel, David V.
Milburn, Peter D.
description Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p > 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes.
doi_str_mv 10.1109/LSENS.2018.2804893
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSENS_2018_2804893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8289326</ieee_id><sourcerecordid>2299479150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiQT5A3pp4nmxH0s_jgRRSUAPiEeb7u6sFmGLbYnh37t8xHiZmabPO8k8CF1T0qeU6LvpfPw87zNCVZ8pkivNz1CH5XKQ0Vyy83_zJerFuCSkRZkknHTQ-xCP_Hpjg4u-wb4-vLbJJucbu8IzSJ--ijh5fA8Jwto1gCdNCjam4L8Av8HKly7tsGvw_MetW-ADL-K-TmaLeIUuaruK0Dv1Llo8jF9HT9n05XEyGk6zkud5yqDWVldWFJxSqgjwgsmSSwZMUEGIUkQqlleqEpKWRVHQAdUSuBVWCFspyrvo9rh3E_z3FmIyS78N7QXRMKZ1LjUdkJZiR6oMPsYAtdkEt7ZhZygxe5XmoNLsVZqTyjZ0cww5APgLKNb-McF_AXo1byw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299479150</pqid></control><display><type>article</type><title>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Worsey, Matthew T. O. ; Pahl, Rebecca ; Thiel, David V. ; Milburn, Peter D.</creator><creatorcontrib>Worsey, Matthew T. O. ; Pahl, Rebecca ; Thiel, David V. ; Milburn, Peter D.</creatorcontrib><description>Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p &gt; 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2018.2804893</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; AHRS ; Analysis of variance ; Athletes ; Australia ; backstroke ; breaststroke ; freestyle ; IMUs ; intra-stroke variation ; Monitoring ; Reference systems ; Sensor phenomena ; Sensors ; swim velocity ; Swimming ; Three axis ; Timing ; Training ; Velocity ; velocity algorithm ; Velocity distribution</subject><ispartof>IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</citedby><cites>FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</cites><orcidid>0000-0002-8499-545X ; 0000-0002-6052-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8289326$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Worsey, Matthew T. O.</creatorcontrib><creatorcontrib>Pahl, Rebecca</creatorcontrib><creatorcontrib>Thiel, David V.</creatorcontrib><creatorcontrib>Milburn, Peter D.</creatorcontrib><title>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p &gt; 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes.</description><subject>Acceleration</subject><subject>AHRS</subject><subject>Analysis of variance</subject><subject>Athletes</subject><subject>Australia</subject><subject>backstroke</subject><subject>breaststroke</subject><subject>freestyle</subject><subject>IMUs</subject><subject>intra-stroke variation</subject><subject>Monitoring</subject><subject>Reference systems</subject><subject>Sensor phenomena</subject><subject>Sensors</subject><subject>swim velocity</subject><subject>Swimming</subject><subject>Three axis</subject><subject>Timing</subject><subject>Training</subject><subject>Velocity</subject><subject>velocity algorithm</subject><subject>Velocity distribution</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1PAjEQhhujiQT5A3pp4nmxH0s_jgRRSUAPiEeb7u6sFmGLbYnh37t8xHiZmabPO8k8CF1T0qeU6LvpfPw87zNCVZ8pkivNz1CH5XKQ0Vyy83_zJerFuCSkRZkknHTQ-xCP_Hpjg4u-wb4-vLbJJucbu8IzSJ--ijh5fA8Jwto1gCdNCjam4L8Av8HKly7tsGvw_MetW-ADL-K-TmaLeIUuaruK0Dv1Llo8jF9HT9n05XEyGk6zkud5yqDWVldWFJxSqgjwgsmSSwZMUEGIUkQqlleqEpKWRVHQAdUSuBVWCFspyrvo9rh3E_z3FmIyS78N7QXRMKZ1LjUdkJZiR6oMPsYAtdkEt7ZhZygxe5XmoNLsVZqTyjZ0cww5APgLKNb-McF_AXo1byw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Worsey, Matthew T. O.</creator><creator>Pahl, Rebecca</creator><creator>Thiel, David V.</creator><creator>Milburn, Peter D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8499-545X</orcidid><orcidid>https://orcid.org/0000-0002-6052-9227</orcidid></search><sort><creationdate>20180301</creationdate><title>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</title><author>Worsey, Matthew T. O. ; Pahl, Rebecca ; Thiel, David V. ; Milburn, Peter D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>AHRS</topic><topic>Analysis of variance</topic><topic>Athletes</topic><topic>Australia</topic><topic>backstroke</topic><topic>breaststroke</topic><topic>freestyle</topic><topic>IMUs</topic><topic>intra-stroke variation</topic><topic>Monitoring</topic><topic>Reference systems</topic><topic>Sensor phenomena</topic><topic>Sensors</topic><topic>swim velocity</topic><topic>Swimming</topic><topic>Three axis</topic><topic>Timing</topic><topic>Training</topic><topic>Velocity</topic><topic>velocity algorithm</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worsey, Matthew T. O.</creatorcontrib><creatorcontrib>Pahl, Rebecca</creatorcontrib><creatorcontrib>Thiel, David V.</creatorcontrib><creatorcontrib>Milburn, Peter D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worsey, Matthew T. O.</au><au>Pahl, Rebecca</au><au>Thiel, David V.</au><au>Milburn, Peter D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Sacrum located IMU sensors were used to monitor three-axis acceleration and three-axis rotation from elite swimmers in competition conditions. The intrastroke velocity was determined for each swimmer using their preferred swim stroke (freestyle, backstroke, and breaststroke) using three different calculation techniques-dual-axis acceleration, dualaxis acceleration eliminating the static gravity constant, and altitude and heading reference system. The mean intrastroke velocity variation (averaged over one 50-m lap) in freestyle swimming was less than 0.6% in all cases. This resulted in a timing under-estimate of less than 0.60 ms for freestyle, 4.0 ms for breaststroke, and a timing overestimate of less than 6.2 ms for backstroke. The difference was less than 5% over the complete stroke (one way ANOVA p &gt; 0.05), indicating no significant difference in the velocity profiles. These simple, robust analysis techniques can be used to quantify variations in every stroke as the swimmer fatigues, providing significant information to coaching staff and athletes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2018.2804893</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8499-545X</orcidid><orcidid>https://orcid.org/0000-0002-6052-9227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_crossref_primary_10_1109_LSENS_2018_2804893
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
AHRS
Analysis of variance
Athletes
Australia
backstroke
breaststroke
freestyle
IMUs
intra-stroke variation
Monitoring
Reference systems
Sensor phenomena
Sensors
swim velocity
Swimming
Three axis
Timing
Training
Velocity
velocity algorithm
Velocity distribution
title A Comparison of Computational Methods to Determine Intrastroke Velocity in Swimming Using IMUs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Computational%20Methods%20to%20Determine%20Intrastroke%20Velocity%20in%20Swimming%20Using%20IMUs&rft.jtitle=IEEE%20sensors%20letters&rft.au=Worsey,%20Matthew%20T.%20O.&rft.date=2018-03-01&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2018.2804893&rft_dat=%3Cproquest_cross%3E2299479150%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-ef9a9da6b311180e3b27c372e2616008807824d8d671cbbb15197e3a6a66ad813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299479150&rft_id=info:pmid/&rft_ieee_id=8289326&rfr_iscdi=true