Loading…
Low-Rank Structured Covariance Matrix Estimation
The covariance matrix estimation problem is posed in both the Bayesian and frequentist settings as the solution of a maximum a posteriori (MAP) or maximum likelihood (ML) optimization, respectively, when the true covariance consists of a known (or bounded) noise floor and a low-rank component. Persy...
Saved in:
Published in: | IEEE signal processing letters 2019-05, Vol.26 (5), p.700-704 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-915c9bd71aedcb4ff4ff94210d2fa4673995285365d887286dbdb5f43e9ca74f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-915c9bd71aedcb4ff4ff94210d2fa4673995285365d887286dbdb5f43e9ca74f3 |
container_end_page | 704 |
container_issue | 5 |
container_start_page | 700 |
container_title | IEEE signal processing letters |
container_volume | 26 |
creator | Shikhaliev, Azer P. Potter, Lee C. Chi, Yuejie |
description | The covariance matrix estimation problem is posed in both the Bayesian and frequentist settings as the solution of a maximum a posteriori (MAP) or maximum likelihood (ML) optimization, respectively, when the true covariance consists of a known (or bounded) noise floor and a low-rank component. Persymmetric structure may also be assumed. The MAP and ML solutions with the non-convex rank constraint are shown to be a simple scalar thresholding of eigenvalues of a suitably translated and projected sample covariance matrix. No iterative optimization is required; therefore, the computation is suited to real-time applications. Our proof is short and elementary without resorting to the duality theory. Numerical results are presented to illustrate the improved estimation performance obtained by incorporating the structural constraints on the unknown covariance. |
doi_str_mv | 10.1109/LSP.2019.2906405 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2019_2906405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8675477</ieee_id><sourcerecordid>2203405883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-915c9bd71aedcb4ff4ff94210d2fa4673995285365d887286dbdb5f43e9ca74f3</originalsourceid><addsrcrecordid>eNo9kMtLxDAQxoMouK7eBS8Fz10nryY5yrI-oKK4eg5pmkBXbdck9fHfm6WLMDBz-L6Zb34InWNYYAzqql4_LQhgtSAKKgb8AM0w57IktMKHeQYBpVIgj9FJjBsAkFjyGYJ6-C6fTf9WrFMYbRqDa4vl8GVCZ3rrigeTQvdTrGLqPkzqhv4UHXnzHt3Zvs_R683qZXlX1o-398vrurRE4VQqzK1qWoGNa23DvM-lGMHQEm9YJahSnEhOK95KKYis2qZtuGfUKWsE83SOLqe92zB8ji4mvRnG0OeTmhCg-UMpaVbBpLJhiDE4r7chBw2_GoPecdGZi95x0Xsu2XIxWTrn3L9cVoIzIegfwQ9dcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203405883</pqid></control><display><type>article</type><title>Low-Rank Structured Covariance Matrix Estimation</title><source>IEEE Xplore (Online service)</source><creator>Shikhaliev, Azer P. ; Potter, Lee C. ; Chi, Yuejie</creator><creatorcontrib>Shikhaliev, Azer P. ; Potter, Lee C. ; Chi, Yuejie</creatorcontrib><description>The covariance matrix estimation problem is posed in both the Bayesian and frequentist settings as the solution of a maximum a posteriori (MAP) or maximum likelihood (ML) optimization, respectively, when the true covariance consists of a known (or bounded) noise floor and a low-rank component. Persymmetric structure may also be assumed. The MAP and ML solutions with the non-convex rank constraint are shown to be a simple scalar thresholding of eigenvalues of a suitably translated and projected sample covariance matrix. No iterative optimization is required; therefore, the computation is suited to real-time applications. Our proof is short and elementary without resorting to the duality theory. Numerical results are presented to illustrate the improved estimation performance obtained by incorporating the structural constraints on the unknown covariance.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2019.2906405</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Bayesian MAP ; Clutter ; Covariance matrices ; Covariance matrix ; Economic models ; Eigenvalues ; Eigenvalues and eigenfunctions ; Estimating techniques ; Iterative methods ; low rank ; maximum likelihood ; Maximum likelihood estimation ; Optimization ; persymmetry ; Thermal noise</subject><ispartof>IEEE signal processing letters, 2019-05, Vol.26 (5), p.700-704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-915c9bd71aedcb4ff4ff94210d2fa4673995285365d887286dbdb5f43e9ca74f3</citedby><cites>FETCH-LOGICAL-c291t-915c9bd71aedcb4ff4ff94210d2fa4673995285365d887286dbdb5f43e9ca74f3</cites><orcidid>0000-0002-6766-5459 ; 0000-0002-1537-1627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8675477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Shikhaliev, Azer P.</creatorcontrib><creatorcontrib>Potter, Lee C.</creatorcontrib><creatorcontrib>Chi, Yuejie</creatorcontrib><title>Low-Rank Structured Covariance Matrix Estimation</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>The covariance matrix estimation problem is posed in both the Bayesian and frequentist settings as the solution of a maximum a posteriori (MAP) or maximum likelihood (ML) optimization, respectively, when the true covariance consists of a known (or bounded) noise floor and a low-rank component. Persymmetric structure may also be assumed. The MAP and ML solutions with the non-convex rank constraint are shown to be a simple scalar thresholding of eigenvalues of a suitably translated and projected sample covariance matrix. No iterative optimization is required; therefore, the computation is suited to real-time applications. Our proof is short and elementary without resorting to the duality theory. Numerical results are presented to illustrate the improved estimation performance obtained by incorporating the structural constraints on the unknown covariance.</description><subject>Bayesian analysis</subject><subject>Bayesian MAP</subject><subject>Clutter</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Economic models</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimating techniques</subject><subject>Iterative methods</subject><subject>low rank</subject><subject>maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Optimization</subject><subject>persymmetry</subject><subject>Thermal noise</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLxDAQxoMouK7eBS8Fz10nryY5yrI-oKK4eg5pmkBXbdck9fHfm6WLMDBz-L6Zb34InWNYYAzqql4_LQhgtSAKKgb8AM0w57IktMKHeQYBpVIgj9FJjBsAkFjyGYJ6-C6fTf9WrFMYbRqDa4vl8GVCZ3rrigeTQvdTrGLqPkzqhv4UHXnzHt3Zvs_R683qZXlX1o-398vrurRE4VQqzK1qWoGNa23DvM-lGMHQEm9YJahSnEhOK95KKYis2qZtuGfUKWsE83SOLqe92zB8ji4mvRnG0OeTmhCg-UMpaVbBpLJhiDE4r7chBw2_GoPecdGZi95x0Xsu2XIxWTrn3L9cVoIzIegfwQ9dcw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Shikhaliev, Azer P.</creator><creator>Potter, Lee C.</creator><creator>Chi, Yuejie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6766-5459</orcidid><orcidid>https://orcid.org/0000-0002-1537-1627</orcidid></search><sort><creationdate>20190501</creationdate><title>Low-Rank Structured Covariance Matrix Estimation</title><author>Shikhaliev, Azer P. ; Potter, Lee C. ; Chi, Yuejie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-915c9bd71aedcb4ff4ff94210d2fa4673995285365d887286dbdb5f43e9ca74f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Bayesian MAP</topic><topic>Clutter</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Economic models</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimating techniques</topic><topic>Iterative methods</topic><topic>low rank</topic><topic>maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Optimization</topic><topic>persymmetry</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shikhaliev, Azer P.</creatorcontrib><creatorcontrib>Potter, Lee C.</creatorcontrib><creatorcontrib>Chi, Yuejie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shikhaliev, Azer P.</au><au>Potter, Lee C.</au><au>Chi, Yuejie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Rank Structured Covariance Matrix Estimation</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><spage>700</spage><epage>704</epage><pages>700-704</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>The covariance matrix estimation problem is posed in both the Bayesian and frequentist settings as the solution of a maximum a posteriori (MAP) or maximum likelihood (ML) optimization, respectively, when the true covariance consists of a known (or bounded) noise floor and a low-rank component. Persymmetric structure may also be assumed. The MAP and ML solutions with the non-convex rank constraint are shown to be a simple scalar thresholding of eigenvalues of a suitably translated and projected sample covariance matrix. No iterative optimization is required; therefore, the computation is suited to real-time applications. Our proof is short and elementary without resorting to the duality theory. Numerical results are presented to illustrate the improved estimation performance obtained by incorporating the structural constraints on the unknown covariance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2019.2906405</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6766-5459</orcidid><orcidid>https://orcid.org/0000-0002-1537-1627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2019-05, Vol.26 (5), p.700-704 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2019_2906405 |
source | IEEE Xplore (Online service) |
subjects | Bayesian analysis Bayesian MAP Clutter Covariance matrices Covariance matrix Economic models Eigenvalues Eigenvalues and eigenfunctions Estimating techniques Iterative methods low rank maximum likelihood Maximum likelihood estimation Optimization persymmetry Thermal noise |
title | Low-Rank Structured Covariance Matrix Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Rank%20Structured%20Covariance%20Matrix%20Estimation&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Shikhaliev,%20Azer%20P.&rft.date=2019-05-01&rft.volume=26&rft.issue=5&rft.spage=700&rft.epage=704&rft.pages=700-704&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2019.2906405&rft_dat=%3Cproquest_cross%3E2203405883%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-915c9bd71aedcb4ff4ff94210d2fa4673995285365d887286dbdb5f43e9ca74f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203405883&rft_id=info:pmid/&rft_ieee_id=8675477&rfr_iscdi=true |