Loading…

On Complex Conjugate Pair Sums and Complex Conjugate Subspaces

In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input x(n), we prove that the output of this system is equivalent to computing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2019-09, Vol.26 (9), p.1403-1407
Main Authors: Shah, Shaik Basheeruddin, Chakka, Vijay Kumar, Reddy, Arikatla Satyanarayana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983
container_end_page 1407
container_issue 9
container_start_page 1403
container_title IEEE signal processing letters
container_volume 26
creator Shah, Shaik Basheeruddin
Chakka, Vijay Kumar
Reddy, Arikatla Satyanarayana
description In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input x(n), we prove that the output of this system is equivalent to computing the first order derivative of x(n). Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.
doi_str_mv 10.1109/LSP.2019.2932717
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2019_2932717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8784198</ieee_id><sourcerecordid>2275624458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWD_ugpcFz1sns5ts5iJI8QsKLVTPIZvOSku7uyZd0P_elBZPnt6DeW8e_IS4kTCWEuh-upiPESSNkQqsZHUiRlIpk2Oh5WnyUEFOBOZcXMS4BgAjjRqJh1mbTbptv-HvpO16-HQ7zuZuFbLFsI2Za5f_3BdDHXvnOV6Js8ZtIl8f9VJ8PD-9T17z6ezlbfI4zT2W5S7XhioDBGxKcI6w8agKxabxhmrEUjtmICrRo0SpmqVe1gS-qbUmZ8gUl-Lu8LcP3dfAcWfX3RDaNGkRK6XTitqn4JDyoYsxcGP7sNq68GMl2D0lmyjZPSV7pJQqt4fKipn_4qYypUyzv_zEYWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275624458</pqid></control><display><type>article</type><title>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</title><source>IEEE Xplore (Online service)</source><creator>Shah, Shaik Basheeruddin ; Chakka, Vijay Kumar ; Reddy, Arikatla Satyanarayana</creator><creatorcontrib>Shah, Shaik Basheeruddin ; Chakka, Vijay Kumar ; Reddy, Arikatla Satyanarayana</creatorcontrib><description><![CDATA[In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>, we prove that the output of this system is equivalent to computing the first order derivative of <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>. Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.]]></description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2019.2932717</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ccps ; ccs ; Complex conjugate pair ; Computation ; Computational complexity ; Conjugates ; Convolution ; derivative ; Edge detection ; Equivalence ; Image detection ; Image edge detection ; Impulse response ; Indexes ; Linear systems ; projections ; Radar tracking ; shift-invariant ; Subspaces ; Sums ; Transforms</subject><ispartof>IEEE signal processing letters, 2019-09, Vol.26 (9), p.1403-1407</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983</cites><orcidid>0000-0003-0743-8315 ; 0000-0002-7031-1408 ; 0000-0003-1975-5676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8784198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Shah, Shaik Basheeruddin</creatorcontrib><creatorcontrib>Chakka, Vijay Kumar</creatorcontrib><creatorcontrib>Reddy, Arikatla Satyanarayana</creatorcontrib><title>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description><![CDATA[In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>, we prove that the output of this system is equivalent to computing the first order derivative of <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>. Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.]]></description><subject>ccps</subject><subject>ccs</subject><subject>Complex conjugate pair</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Conjugates</subject><subject>Convolution</subject><subject>derivative</subject><subject>Edge detection</subject><subject>Equivalence</subject><subject>Image detection</subject><subject>Image edge detection</subject><subject>Impulse response</subject><subject>Indexes</subject><subject>Linear systems</subject><subject>projections</subject><subject>Radar tracking</subject><subject>shift-invariant</subject><subject>Subspaces</subject><subject>Sums</subject><subject>Transforms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkM1LAzEQxYMoWD_ugpcFz1sns5ts5iJI8QsKLVTPIZvOSku7uyZd0P_elBZPnt6DeW8e_IS4kTCWEuh-upiPESSNkQqsZHUiRlIpk2Oh5WnyUEFOBOZcXMS4BgAjjRqJh1mbTbptv-HvpO16-HQ7zuZuFbLFsI2Za5f_3BdDHXvnOV6Js8ZtIl8f9VJ8PD-9T17z6ezlbfI4zT2W5S7XhioDBGxKcI6w8agKxabxhmrEUjtmICrRo0SpmqVe1gS-qbUmZ8gUl-Lu8LcP3dfAcWfX3RDaNGkRK6XTitqn4JDyoYsxcGP7sNq68GMl2D0lmyjZPSV7pJQqt4fKipn_4qYypUyzv_zEYWE</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Shah, Shaik Basheeruddin</creator><creator>Chakka, Vijay Kumar</creator><creator>Reddy, Arikatla Satyanarayana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0743-8315</orcidid><orcidid>https://orcid.org/0000-0002-7031-1408</orcidid><orcidid>https://orcid.org/0000-0003-1975-5676</orcidid></search><sort><creationdate>20190901</creationdate><title>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</title><author>Shah, Shaik Basheeruddin ; Chakka, Vijay Kumar ; Reddy, Arikatla Satyanarayana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ccps</topic><topic>ccs</topic><topic>Complex conjugate pair</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Conjugates</topic><topic>Convolution</topic><topic>derivative</topic><topic>Edge detection</topic><topic>Equivalence</topic><topic>Image detection</topic><topic>Image edge detection</topic><topic>Impulse response</topic><topic>Indexes</topic><topic>Linear systems</topic><topic>projections</topic><topic>Radar tracking</topic><topic>shift-invariant</topic><topic>Subspaces</topic><topic>Sums</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Shaik Basheeruddin</creatorcontrib><creatorcontrib>Chakka, Vijay Kumar</creatorcontrib><creatorcontrib>Reddy, Arikatla Satyanarayana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Shaik Basheeruddin</au><au>Chakka, Vijay Kumar</au><au>Reddy, Arikatla Satyanarayana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>26</volume><issue>9</issue><spage>1403</spage><epage>1407</epage><pages>1403-1407</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract><![CDATA[In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>, we prove that the output of this system is equivalent to computing the first order derivative of <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>. Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2019.2932717</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0743-8315</orcidid><orcidid>https://orcid.org/0000-0002-7031-1408</orcidid><orcidid>https://orcid.org/0000-0003-1975-5676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2019-09, Vol.26 (9), p.1403-1407
issn 1070-9908
1558-2361
language eng
recordid cdi_crossref_primary_10_1109_LSP_2019_2932717
source IEEE Xplore (Online service)
subjects ccps
ccs
Complex conjugate pair
Computation
Computational complexity
Conjugates
Convolution
derivative
Edge detection
Equivalence
Image detection
Image edge detection
Impulse response
Indexes
Linear systems
projections
Radar tracking
shift-invariant
Subspaces
Sums
Transforms
title On Complex Conjugate Pair Sums and Complex Conjugate Subspaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Complex%20Conjugate%20Pair%20Sums%20and%20Complex%20Conjugate%20Subspaces&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Shah,%20Shaik%20Basheeruddin&rft.date=2019-09-01&rft.volume=26&rft.issue=9&rft.spage=1403&rft.epage=1407&rft.pages=1403-1407&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2019.2932717&rft_dat=%3Cproquest_cross%3E2275624458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275624458&rft_id=info:pmid/&rft_ieee_id=8784198&rfr_iscdi=true