Loading…
On Complex Conjugate Pair Sums and Complex Conjugate Subspaces
In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input x(n), we prove that the output of this system is equivalent to computing...
Saved in:
Published in: | IEEE signal processing letters 2019-09, Vol.26 (9), p.1403-1407 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983 |
container_end_page | 1407 |
container_issue | 9 |
container_start_page | 1403 |
container_title | IEEE signal processing letters |
container_volume | 26 |
creator | Shah, Shaik Basheeruddin Chakka, Vijay Kumar Reddy, Arikatla Satyanarayana |
description | In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input x(n), we prove that the output of this system is equivalent to computing the first order derivative of x(n). Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation. |
doi_str_mv | 10.1109/LSP.2019.2932717 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LSP_2019_2932717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8784198</ieee_id><sourcerecordid>2275624458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWD_ugpcFz1sns5ts5iJI8QsKLVTPIZvOSku7uyZd0P_elBZPnt6DeW8e_IS4kTCWEuh-upiPESSNkQqsZHUiRlIpk2Oh5WnyUEFOBOZcXMS4BgAjjRqJh1mbTbptv-HvpO16-HQ7zuZuFbLFsI2Za5f_3BdDHXvnOV6Js8ZtIl8f9VJ8PD-9T17z6ezlbfI4zT2W5S7XhioDBGxKcI6w8agKxabxhmrEUjtmICrRo0SpmqVe1gS-qbUmZ8gUl-Lu8LcP3dfAcWfX3RDaNGkRK6XTitqn4JDyoYsxcGP7sNq68GMl2D0lmyjZPSV7pJQqt4fKipn_4qYypUyzv_zEYWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275624458</pqid></control><display><type>article</type><title>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</title><source>IEEE Xplore (Online service)</source><creator>Shah, Shaik Basheeruddin ; Chakka, Vijay Kumar ; Reddy, Arikatla Satyanarayana</creator><creatorcontrib>Shah, Shaik Basheeruddin ; Chakka, Vijay Kumar ; Reddy, Arikatla Satyanarayana</creatorcontrib><description><![CDATA[In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>, we prove that the output of this system is equivalent to computing the first order derivative of <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>. Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.]]></description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2019.2932717</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ccps ; ccs ; Complex conjugate pair ; Computation ; Computational complexity ; Conjugates ; Convolution ; derivative ; Edge detection ; Equivalence ; Image detection ; Image edge detection ; Impulse response ; Indexes ; Linear systems ; projections ; Radar tracking ; shift-invariant ; Subspaces ; Sums ; Transforms</subject><ispartof>IEEE signal processing letters, 2019-09, Vol.26 (9), p.1403-1407</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983</cites><orcidid>0000-0003-0743-8315 ; 0000-0002-7031-1408 ; 0000-0003-1975-5676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8784198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Shah, Shaik Basheeruddin</creatorcontrib><creatorcontrib>Chakka, Vijay Kumar</creatorcontrib><creatorcontrib>Reddy, Arikatla Satyanarayana</creatorcontrib><title>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description><![CDATA[In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>, we prove that the output of this system is equivalent to computing the first order derivative of <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>. Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.]]></description><subject>ccps</subject><subject>ccs</subject><subject>Complex conjugate pair</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Conjugates</subject><subject>Convolution</subject><subject>derivative</subject><subject>Edge detection</subject><subject>Equivalence</subject><subject>Image detection</subject><subject>Image edge detection</subject><subject>Impulse response</subject><subject>Indexes</subject><subject>Linear systems</subject><subject>projections</subject><subject>Radar tracking</subject><subject>shift-invariant</subject><subject>Subspaces</subject><subject>Sums</subject><subject>Transforms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkM1LAzEQxYMoWD_ugpcFz1sns5ts5iJI8QsKLVTPIZvOSku7uyZd0P_elBZPnt6DeW8e_IS4kTCWEuh-upiPESSNkQqsZHUiRlIpk2Oh5WnyUEFOBOZcXMS4BgAjjRqJh1mbTbptv-HvpO16-HQ7zuZuFbLFsI2Za5f_3BdDHXvnOV6Js8ZtIl8f9VJ8PD-9T17z6ezlbfI4zT2W5S7XhioDBGxKcI6w8agKxabxhmrEUjtmICrRo0SpmqVe1gS-qbUmZ8gUl-Lu8LcP3dfAcWfX3RDaNGkRK6XTitqn4JDyoYsxcGP7sNq68GMl2D0lmyjZPSV7pJQqt4fKipn_4qYypUyzv_zEYWE</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Shah, Shaik Basheeruddin</creator><creator>Chakka, Vijay Kumar</creator><creator>Reddy, Arikatla Satyanarayana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0743-8315</orcidid><orcidid>https://orcid.org/0000-0002-7031-1408</orcidid><orcidid>https://orcid.org/0000-0003-1975-5676</orcidid></search><sort><creationdate>20190901</creationdate><title>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</title><author>Shah, Shaik Basheeruddin ; Chakka, Vijay Kumar ; Reddy, Arikatla Satyanarayana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ccps</topic><topic>ccs</topic><topic>Complex conjugate pair</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Conjugates</topic><topic>Convolution</topic><topic>derivative</topic><topic>Edge detection</topic><topic>Equivalence</topic><topic>Image detection</topic><topic>Image edge detection</topic><topic>Impulse response</topic><topic>Indexes</topic><topic>Linear systems</topic><topic>projections</topic><topic>Radar tracking</topic><topic>shift-invariant</topic><topic>Subspaces</topic><topic>Sums</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Shaik Basheeruddin</creatorcontrib><creatorcontrib>Chakka, Vijay Kumar</creatorcontrib><creatorcontrib>Reddy, Arikatla Satyanarayana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Shaik Basheeruddin</au><au>Chakka, Vijay Kumar</au><au>Reddy, Arikatla Satyanarayana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Complex Conjugate Pair Sums and Complex Conjugate Subspaces</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>26</volume><issue>9</issue><spage>1403</spage><epage>1407</epage><pages>1403-1407</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract><![CDATA[In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>, we prove that the output of this system is equivalent to computing the first order derivative of <inline-formula><tex-math notation="LaTeX">x(n)</tex-math></inline-formula>. Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2019.2932717</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0743-8315</orcidid><orcidid>https://orcid.org/0000-0002-7031-1408</orcidid><orcidid>https://orcid.org/0000-0003-1975-5676</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2019-09, Vol.26 (9), p.1403-1407 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LSP_2019_2932717 |
source | IEEE Xplore (Online service) |
subjects | ccps ccs Complex conjugate pair Computation Computational complexity Conjugates Convolution derivative Edge detection Equivalence Image detection Image edge detection Impulse response Indexes Linear systems projections Radar tracking shift-invariant Subspaces Sums Transforms |
title | On Complex Conjugate Pair Sums and Complex Conjugate Subspaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Complex%20Conjugate%20Pair%20Sums%20and%20Complex%20Conjugate%20Subspaces&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Shah,%20Shaik%20Basheeruddin&rft.date=2019-09-01&rft.volume=26&rft.issue=9&rft.spage=1403&rft.epage=1407&rft.pages=1403-1407&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2019.2932717&rft_dat=%3Cproquest_cross%3E2275624458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-68978090e840aa92fc2535e8fc89b2246aee09942c21215fd6db90cfb669a8983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275624458&rft_id=info:pmid/&rft_ieee_id=8784198&rfr_iscdi=true |