Loading…
Efficient Training Management for Mobile Crowd-Machine Learning: A Deep Reinforcement Learning Approach
In this letter, we consider the concept of mobile crowd-machine learning (MCML) for a federated learning model. The MCML enables mobile devices in a mobile network to collaboratively train neural network models required by a server while keeping data on the mobile devices. The MCML thus addresses da...
Saved in:
Published in: | IEEE wireless communications letters 2019-10, Vol.8 (5), p.1345-1348 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-69580999f319b8b6224b2fafff02f7e4efea76471b6d8e0d9ba3769409d596cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-69580999f319b8b6224b2fafff02f7e4efea76471b6d8e0d9ba3769409d596cc3 |
container_end_page | 1348 |
container_issue | 5 |
container_start_page | 1345 |
container_title | IEEE wireless communications letters |
container_volume | 8 |
creator | Anh, Tran The Luong, Nguyen Cong Niyato, Dusit Kim, Dong In Wang, Li-Chun |
description | In this letter, we consider the concept of mobile crowd-machine learning (MCML) for a federated learning model. The MCML enables mobile devices in a mobile network to collaboratively train neural network models required by a server while keeping data on the mobile devices. The MCML thus addresses data privacy issues of traditional machine learning. However, the mobile devices are constrained by energy, CPU, and wireless bandwidth. Thus, to minimize the energy consumption, training time, and communication cost, the server needs to determine proper amounts of data and energy that the mobile devices use for training. However, under the dynamics and uncertainty of the mobile environment, it is challenging for the server to determine the optimal decisions on mobile device resource management. In this letter, we propose to adopt a deep Q -learning algorithm that allows the server to learn and find optimal decisions without any a priori knowledge of network dynamics. Simulation results show that the proposed algorithm outperforms the static algorithms in terms of energy consumption and training latency. |
doi_str_mv | 10.1109/LWC.2019.2917133 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LWC_2019_2917133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8716527</ieee_id><sourcerecordid>2305632353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-69580999f319b8b6224b2fafff02f7e4efea76471b6d8e0d9ba3769409d596cc3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3I9nNeiuxfkCKIBWPyyaZrVvaTdy0iP-9G6KdywwzvzcPHkLXlMwpJequ_CjmjFA1Z4pKyvkZmjAqWMJ4mp2fZi4v0azvtySWIJTRfII2S2td7cAf8DoY553f4JXxZgP7YWfbgFdt5XaAi9B-N8nK1J_OAy7BhAG-xwv8ANDhN3A-0vWo-z_jRdeFNmqu0IU1ux5mf32K3h-X6-I5KV-fXopFmdQ8k4dEqCwnSinLqarySjCWVswaay1hVkIKFowUqaSVaHIgjaoMl0KlRDWZEnXNp-h2_Bttv47QH_S2PQYfLTXjJBOc8YxHioxUHdq-D2B1F9zehB9NiR4S1TFRPSSq_xKNkptR4gDghOeSioxJ_gvf5nE5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305632353</pqid></control><display><type>article</type><title>Efficient Training Management for Mobile Crowd-Machine Learning: A Deep Reinforcement Learning Approach</title><source>IEEE Xplore (Online service)</source><creator>Anh, Tran The ; Luong, Nguyen Cong ; Niyato, Dusit ; Kim, Dong In ; Wang, Li-Chun</creator><creatorcontrib>Anh, Tran The ; Luong, Nguyen Cong ; Niyato, Dusit ; Kim, Dong In ; Wang, Li-Chun</creatorcontrib><description>In this letter, we consider the concept of mobile crowd-machine learning (MCML) for a federated learning model. The MCML enables mobile devices in a mobile network to collaboratively train neural network models required by a server while keeping data on the mobile devices. The MCML thus addresses data privacy issues of traditional machine learning. However, the mobile devices are constrained by energy, CPU, and wireless bandwidth. Thus, to minimize the energy consumption, training time, and communication cost, the server needs to determine proper amounts of data and energy that the mobile devices use for training. However, under the dynamics and uncertainty of the mobile environment, it is challenging for the server to determine the optimal decisions on mobile device resource management. In this letter, we propose to adopt a deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning algorithm that allows the server to learn and find optimal decisions without any a priori knowledge of network dynamics. Simulation results show that the proposed algorithm outperforms the static algorithms in terms of energy consumption and training latency.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2019.2917133</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Bandwidths ; Computer simulation ; Data models ; Decisions ; deep reinforcement learning ; Electronic devices ; Energy conservation ; Energy consumption ; federated learning ; Heuristic algorithms ; Machine learning ; Mobile communication systems ; Mobile crowd ; Mobile handsets ; Neural networks ; Resource management ; Servers ; Training ; Wireless networks</subject><ispartof>IEEE wireless communications letters, 2019-10, Vol.8 (5), p.1345-1348</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-69580999f319b8b6224b2fafff02f7e4efea76471b6d8e0d9ba3769409d596cc3</citedby><cites>FETCH-LOGICAL-c357t-69580999f319b8b6224b2fafff02f7e4efea76471b6d8e0d9ba3769409d596cc3</cites><orcidid>0000-0001-7711-8072 ; 0000-0002-7883-6217 ; 0000-0002-6973-4497 ; 0000-0002-7442-7416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8716527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Anh, Tran The</creatorcontrib><creatorcontrib>Luong, Nguyen Cong</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Kim, Dong In</creatorcontrib><creatorcontrib>Wang, Li-Chun</creatorcontrib><title>Efficient Training Management for Mobile Crowd-Machine Learning: A Deep Reinforcement Learning Approach</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>In this letter, we consider the concept of mobile crowd-machine learning (MCML) for a federated learning model. The MCML enables mobile devices in a mobile network to collaboratively train neural network models required by a server while keeping data on the mobile devices. The MCML thus addresses data privacy issues of traditional machine learning. However, the mobile devices are constrained by energy, CPU, and wireless bandwidth. Thus, to minimize the energy consumption, training time, and communication cost, the server needs to determine proper amounts of data and energy that the mobile devices use for training. However, under the dynamics and uncertainty of the mobile environment, it is challenging for the server to determine the optimal decisions on mobile device resource management. In this letter, we propose to adopt a deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning algorithm that allows the server to learn and find optimal decisions without any a priori knowledge of network dynamics. Simulation results show that the proposed algorithm outperforms the static algorithms in terms of energy consumption and training latency.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bandwidths</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Decisions</subject><subject>deep reinforcement learning</subject><subject>Electronic devices</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>federated learning</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>Mobile communication systems</subject><subject>Mobile crowd</subject><subject>Mobile handsets</subject><subject>Neural networks</subject><subject>Resource management</subject><subject>Servers</subject><subject>Training</subject><subject>Wireless networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3I9nNeiuxfkCKIBWPyyaZrVvaTdy0iP-9G6KdywwzvzcPHkLXlMwpJequ_CjmjFA1Z4pKyvkZmjAqWMJ4mp2fZi4v0azvtySWIJTRfII2S2td7cAf8DoY553f4JXxZgP7YWfbgFdt5XaAi9B-N8nK1J_OAy7BhAG-xwv8ANDhN3A-0vWo-z_jRdeFNmqu0IU1ux5mf32K3h-X6-I5KV-fXopFmdQ8k4dEqCwnSinLqarySjCWVswaay1hVkIKFowUqaSVaHIgjaoMl0KlRDWZEnXNp-h2_Bttv47QH_S2PQYfLTXjJBOc8YxHioxUHdq-D2B1F9zehB9NiR4S1TFRPSSq_xKNkptR4gDghOeSioxJ_gvf5nE5</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Anh, Tran The</creator><creator>Luong, Nguyen Cong</creator><creator>Niyato, Dusit</creator><creator>Kim, Dong In</creator><creator>Wang, Li-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7711-8072</orcidid><orcidid>https://orcid.org/0000-0002-7883-6217</orcidid><orcidid>https://orcid.org/0000-0002-6973-4497</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid></search><sort><creationdate>20191001</creationdate><title>Efficient Training Management for Mobile Crowd-Machine Learning: A Deep Reinforcement Learning Approach</title><author>Anh, Tran The ; Luong, Nguyen Cong ; Niyato, Dusit ; Kim, Dong In ; Wang, Li-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-69580999f319b8b6224b2fafff02f7e4efea76471b6d8e0d9ba3769409d596cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bandwidths</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Decisions</topic><topic>deep reinforcement learning</topic><topic>Electronic devices</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>federated learning</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>Mobile communication systems</topic><topic>Mobile crowd</topic><topic>Mobile handsets</topic><topic>Neural networks</topic><topic>Resource management</topic><topic>Servers</topic><topic>Training</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, Tran The</creatorcontrib><creatorcontrib>Luong, Nguyen Cong</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Kim, Dong In</creatorcontrib><creatorcontrib>Wang, Li-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, Tran The</au><au>Luong, Nguyen Cong</au><au>Niyato, Dusit</au><au>Kim, Dong In</au><au>Wang, Li-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Training Management for Mobile Crowd-Machine Learning: A Deep Reinforcement Learning Approach</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>8</volume><issue>5</issue><spage>1345</spage><epage>1348</epage><pages>1345-1348</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>In this letter, we consider the concept of mobile crowd-machine learning (MCML) for a federated learning model. The MCML enables mobile devices in a mobile network to collaboratively train neural network models required by a server while keeping data on the mobile devices. The MCML thus addresses data privacy issues of traditional machine learning. However, the mobile devices are constrained by energy, CPU, and wireless bandwidth. Thus, to minimize the energy consumption, training time, and communication cost, the server needs to determine proper amounts of data and energy that the mobile devices use for training. However, under the dynamics and uncertainty of the mobile environment, it is challenging for the server to determine the optimal decisions on mobile device resource management. In this letter, we propose to adopt a deep <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning algorithm that allows the server to learn and find optimal decisions without any a priori knowledge of network dynamics. Simulation results show that the proposed algorithm outperforms the static algorithms in terms of energy consumption and training latency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2019.2917133</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7711-8072</orcidid><orcidid>https://orcid.org/0000-0002-7883-6217</orcidid><orcidid>https://orcid.org/0000-0002-6973-4497</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2019-10, Vol.8 (5), p.1345-1348 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LWC_2019_2917133 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Artificial intelligence Bandwidths Computer simulation Data models Decisions deep reinforcement learning Electronic devices Energy conservation Energy consumption federated learning Heuristic algorithms Machine learning Mobile communication systems Mobile crowd Mobile handsets Neural networks Resource management Servers Training Wireless networks |
title | Efficient Training Management for Mobile Crowd-Machine Learning: A Deep Reinforcement Learning Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Training%20Management%20for%20Mobile%20Crowd-Machine%20Learning:%20A%20Deep%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Anh,%20Tran%20The&rft.date=2019-10-01&rft.volume=8&rft.issue=5&rft.spage=1345&rft.epage=1348&rft.pages=1345-1348&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2019.2917133&rft_dat=%3Cproquest_cross%3E2305632353%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-69580999f319b8b6224b2fafff02f7e4efea76471b6d8e0d9ba3769409d596cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305632353&rft_id=info:pmid/&rft_ieee_id=8716527&rfr_iscdi=true |