Loading…
Enabling Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM Cache Management
Hybrid main memories composed of DRAM as a cache to scalable non-volatile memories such as phase-change memory (PCM) can provide much larger storage capacity than traditional main memories. A key challenge for enabling high-performance and scalable hybrid memories, though, is efficiently managing th...
Saved in:
Published in: | IEEE computer architecture letters 2012-07, Vol.11 (2), p.61-64 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hybrid main memories composed of DRAM as a cache to scalable non-volatile memories such as phase-change memory (PCM) can provide much larger storage capacity than traditional main memories. A key challenge for enabling high-performance and scalable hybrid memories, though, is efficiently managing the metadata (e.g., tags) for data cached in DRAM at a fine granularity. Based on the observation that storing metadata off-chip in the same row as their data exploits DRAM row buffer locality, this paper reduces the overhead of fine-granularity DRAM caches by only caching the metadata for recently accessed rows on-chip using a small buffer. Leveraging the flexibility and efficiency of such a fine-granularity DRAM cache, we also develop an adaptive policy to choose the best granularity when migrating data into DRAM. On a hybrid memory with a 512MB DRAM cache, our proposal using an 8KB on-chip buffer can achieve within 6% of the performance of, and 18% better energy efficiency than, a conventional 8MB SRAM metadata store, even when the energy overhead due to large SRAM metadata storage is not considered. |
---|---|
ISSN: | 1556-6056 1556-6064 |
DOI: | 10.1109/L-CA.2012.2 |