Loading…

Chemical Kinetics: A CS Perspective

Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scienti...

Full description

Saved in:
Bibliographic Details
Published in:Computing in science & engineering 2016-09, Vol.18 (5), p.48-55
Main Authors: Mehta, Dinesh P., Dean, Anthony M., Kouri, Tina M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93
container_end_page 55
container_issue 5
container_start_page 48
container_title Computing in science & engineering
container_volume 18
creator Mehta, Dinesh P.
Dean, Anthony M.
Kouri, Tina M.
description Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends.
doi_str_mv 10.1109/MCSE.2016.19
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCSE_2016_19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412632</ieee_id><sourcerecordid>1835618586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgCs7pzZuXwi4e7MxLmjTxNsr8gROFKXgLafaKGd1ak07wv7dl4sHTe4cP7335EnIOdApA9fVTsZxPGQU5BX1ARiCESrmU74fDziDVEsQxOYlxTSnNlBYjMik-cOOdrZNHv8XOu3iTzJJimbxgiC26zn_hKTmqbB3x7HeOydvt_LW4TxfPdw_FbJE6lvMudZaWFa6EXAE6zlAou1KytKpUXJZcKUF1XgqaQSbyKucClLUMSyGFU9xpPiaX-7ttaD53GDuz8dFhXdstNrtoQHEhQQklezr5R9fNLmz7dL2CjHGp-0xjcrVXLjQxBqxMG_zGhm8D1AyNmaExMzRmYPh_seceEf9ongGTnPEfAyRjog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814236927</pqid></control><display><type>article</type><title>Chemical Kinetics: A CS Perspective</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mehta, Dinesh P. ; Dean, Anthony M. ; Kouri, Tina M.</creator><creatorcontrib>Mehta, Dinesh P. ; Dean, Anthony M. ; Kouri, Tina M.</creatorcontrib><description>Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2016.19</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alternative fuels ; Chemical elements ; chemical kinetics ; Chemical reactors ; Climate change ; Computation ; computational chemistry ; Consistency ; Gases ; graph applications ; Kinetic theory ; Photochemical smog ; reaction classification ; Reaction kinetics ; reaction mapping ; scientific computing</subject><ispartof>Computing in science &amp; engineering, 2016-09, Vol.18 (5), p.48-55</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mehta, Dinesh P.</creatorcontrib><creatorcontrib>Dean, Anthony M.</creatorcontrib><creatorcontrib>Kouri, Tina M.</creatorcontrib><title>Chemical Kinetics: A CS Perspective</title><title>Computing in science &amp; engineering</title><addtitle>CISE-M</addtitle><description>Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends.</description><subject>Algorithms</subject><subject>Alternative fuels</subject><subject>Chemical elements</subject><subject>chemical kinetics</subject><subject>Chemical reactors</subject><subject>Climate change</subject><subject>Computation</subject><subject>computational chemistry</subject><subject>Consistency</subject><subject>Gases</subject><subject>graph applications</subject><subject>Kinetic theory</subject><subject>Photochemical smog</subject><subject>reaction classification</subject><subject>Reaction kinetics</subject><subject>reaction mapping</subject><subject>scientific computing</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgCs7pzZuXwi4e7MxLmjTxNsr8gROFKXgLafaKGd1ak07wv7dl4sHTe4cP7335EnIOdApA9fVTsZxPGQU5BX1ARiCESrmU74fDziDVEsQxOYlxTSnNlBYjMik-cOOdrZNHv8XOu3iTzJJimbxgiC26zn_hKTmqbB3x7HeOydvt_LW4TxfPdw_FbJE6lvMudZaWFa6EXAE6zlAou1KytKpUXJZcKUF1XgqaQSbyKucClLUMSyGFU9xpPiaX-7ttaD53GDuz8dFhXdstNrtoQHEhQQklezr5R9fNLmz7dL2CjHGp-0xjcrVXLjQxBqxMG_zGhm8D1AyNmaExMzRmYPh_seceEf9ongGTnPEfAyRjog</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Mehta, Dinesh P.</creator><creator>Dean, Anthony M.</creator><creator>Kouri, Tina M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201609</creationdate><title>Chemical Kinetics: A CS Perspective</title><author>Mehta, Dinesh P. ; Dean, Anthony M. ; Kouri, Tina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Alternative fuels</topic><topic>Chemical elements</topic><topic>chemical kinetics</topic><topic>Chemical reactors</topic><topic>Climate change</topic><topic>Computation</topic><topic>computational chemistry</topic><topic>Consistency</topic><topic>Gases</topic><topic>graph applications</topic><topic>Kinetic theory</topic><topic>Photochemical smog</topic><topic>reaction classification</topic><topic>Reaction kinetics</topic><topic>reaction mapping</topic><topic>scientific computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Dinesh P.</creatorcontrib><creatorcontrib>Dean, Anthony M.</creatorcontrib><creatorcontrib>Kouri, Tina M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Computing in science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Dinesh P.</au><au>Dean, Anthony M.</au><au>Kouri, Tina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Kinetics: A CS Perspective</atitle><jtitle>Computing in science &amp; engineering</jtitle><stitle>CISE-M</stitle><date>2016-09</date><risdate>2016</risdate><volume>18</volume><issue>5</issue><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2016.19</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1521-9615
ispartof Computing in science & engineering, 2016-09, Vol.18 (5), p.48-55
issn 1521-9615
1558-366X
language eng
recordid cdi_crossref_primary_10_1109_MCSE_2016_19
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Alternative fuels
Chemical elements
chemical kinetics
Chemical reactors
Climate change
Computation
computational chemistry
Consistency
Gases
graph applications
Kinetic theory
Photochemical smog
reaction classification
Reaction kinetics
reaction mapping
scientific computing
title Chemical Kinetics: A CS Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Kinetics:%20A%20CS%20Perspective&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Mehta,%20Dinesh%20P.&rft.date=2016-09&rft.volume=18&rft.issue=5&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2016.19&rft_dat=%3Cproquest_cross%3E1835618586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1814236927&rft_id=info:pmid/&rft_ieee_id=7412632&rfr_iscdi=true