Loading…
Chemical Kinetics: A CS Perspective
Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scienti...
Saved in:
Published in: | Computing in science & engineering 2016-09, Vol.18 (5), p.48-55 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93 |
container_end_page | 55 |
container_issue | 5 |
container_start_page | 48 |
container_title | Computing in science & engineering |
container_volume | 18 |
creator | Mehta, Dinesh P. Dean, Anthony M. Kouri, Tina M. |
description | Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends. |
doi_str_mv | 10.1109/MCSE.2016.19 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MCSE_2016_19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412632</ieee_id><sourcerecordid>1835618586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93</originalsourceid><addsrcrecordid>eNpd0M9LwzAUB_AgCs7pzZuXwi4e7MxLmjTxNsr8gROFKXgLafaKGd1ak07wv7dl4sHTe4cP7335EnIOdApA9fVTsZxPGQU5BX1ARiCESrmU74fDziDVEsQxOYlxTSnNlBYjMik-cOOdrZNHv8XOu3iTzJJimbxgiC26zn_hKTmqbB3x7HeOydvt_LW4TxfPdw_FbJE6lvMudZaWFa6EXAE6zlAou1KytKpUXJZcKUF1XgqaQSbyKucClLUMSyGFU9xpPiaX-7ttaD53GDuz8dFhXdstNrtoQHEhQQklezr5R9fNLmz7dL2CjHGp-0xjcrVXLjQxBqxMG_zGhm8D1AyNmaExMzRmYPh_seceEf9ongGTnPEfAyRjog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814236927</pqid></control><display><type>article</type><title>Chemical Kinetics: A CS Perspective</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mehta, Dinesh P. ; Dean, Anthony M. ; Kouri, Tina M.</creator><creatorcontrib>Mehta, Dinesh P. ; Dean, Anthony M. ; Kouri, Tina M.</creatorcontrib><description>Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends.</description><identifier>ISSN: 1521-9615</identifier><identifier>EISSN: 1558-366X</identifier><identifier>DOI: 10.1109/MCSE.2016.19</identifier><identifier>CODEN: CSENFA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alternative fuels ; Chemical elements ; chemical kinetics ; Chemical reactors ; Climate change ; Computation ; computational chemistry ; Consistency ; Gases ; graph applications ; Kinetic theory ; Photochemical smog ; reaction classification ; Reaction kinetics ; reaction mapping ; scientific computing</subject><ispartof>Computing in science & engineering, 2016-09, Vol.18 (5), p.48-55</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mehta, Dinesh P.</creatorcontrib><creatorcontrib>Dean, Anthony M.</creatorcontrib><creatorcontrib>Kouri, Tina M.</creatorcontrib><title>Chemical Kinetics: A CS Perspective</title><title>Computing in science & engineering</title><addtitle>CISE-M</addtitle><description>Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends.</description><subject>Algorithms</subject><subject>Alternative fuels</subject><subject>Chemical elements</subject><subject>chemical kinetics</subject><subject>Chemical reactors</subject><subject>Climate change</subject><subject>Computation</subject><subject>computational chemistry</subject><subject>Consistency</subject><subject>Gases</subject><subject>graph applications</subject><subject>Kinetic theory</subject><subject>Photochemical smog</subject><subject>reaction classification</subject><subject>Reaction kinetics</subject><subject>reaction mapping</subject><subject>scientific computing</subject><issn>1521-9615</issn><issn>1558-366X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAUB_AgCs7pzZuXwi4e7MxLmjTxNsr8gROFKXgLafaKGd1ak07wv7dl4sHTe4cP7335EnIOdApA9fVTsZxPGQU5BX1ARiCESrmU74fDziDVEsQxOYlxTSnNlBYjMik-cOOdrZNHv8XOu3iTzJJimbxgiC26zn_hKTmqbB3x7HeOydvt_LW4TxfPdw_FbJE6lvMudZaWFa6EXAE6zlAou1KytKpUXJZcKUF1XgqaQSbyKucClLUMSyGFU9xpPiaX-7ttaD53GDuz8dFhXdstNrtoQHEhQQklezr5R9fNLmz7dL2CjHGp-0xjcrVXLjQxBqxMG_zGhm8D1AyNmaExMzRmYPh_seceEf9ongGTnPEfAyRjog</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Mehta, Dinesh P.</creator><creator>Dean, Anthony M.</creator><creator>Kouri, Tina M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201609</creationdate><title>Chemical Kinetics: A CS Perspective</title><author>Mehta, Dinesh P. ; Dean, Anthony M. ; Kouri, Tina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Alternative fuels</topic><topic>Chemical elements</topic><topic>chemical kinetics</topic><topic>Chemical reactors</topic><topic>Climate change</topic><topic>Computation</topic><topic>computational chemistry</topic><topic>Consistency</topic><topic>Gases</topic><topic>graph applications</topic><topic>Kinetic theory</topic><topic>Photochemical smog</topic><topic>reaction classification</topic><topic>Reaction kinetics</topic><topic>reaction mapping</topic><topic>scientific computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehta, Dinesh P.</creatorcontrib><creatorcontrib>Dean, Anthony M.</creatorcontrib><creatorcontrib>Kouri, Tina M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Computing in science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehta, Dinesh P.</au><au>Dean, Anthony M.</au><au>Kouri, Tina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Kinetics: A CS Perspective</atitle><jtitle>Computing in science & engineering</jtitle><stitle>CISE-M</stitle><date>2016-09</date><risdate>2016</risdate><volume>18</volume><issue>5</issue><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>1521-9615</issn><eissn>1558-366X</eissn><coden>CSENFA</coden><abstract>Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. This overview discusses algorithmic techniques for mechanism generation, consistency and completeness verification, and mechanism reduction, as well as ongoing research trends.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MCSE.2016.19</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1521-9615 |
ispartof | Computing in science & engineering, 2016-09, Vol.18 (5), p.48-55 |
issn | 1521-9615 1558-366X |
language | eng |
recordid | cdi_crossref_primary_10_1109_MCSE_2016_19 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Alternative fuels Chemical elements chemical kinetics Chemical reactors Climate change Computation computational chemistry Consistency Gases graph applications Kinetic theory Photochemical smog reaction classification Reaction kinetics reaction mapping scientific computing |
title | Chemical Kinetics: A CS Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Kinetics:%20A%20CS%20Perspective&rft.jtitle=Computing%20in%20science%20&%20engineering&rft.au=Mehta,%20Dinesh%20P.&rft.date=2016-09&rft.volume=18&rft.issue=5&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=1521-9615&rft.eissn=1558-366X&rft.coden=CSENFA&rft_id=info:doi/10.1109/MCSE.2016.19&rft_dat=%3Cproquest_cross%3E1835618586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-ca0bfed56d1ec32e58ad86ba8b836b3885097b5041457f73518aa2eb565c83c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1814236927&rft_id=info:pmid/&rft_ieee_id=7412632&rfr_iscdi=true |