Loading…
KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research
Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.
Saved in:
Published in: | Computer (Long Beach, Calif.) Calif.), 2019-02, Vol.52 (2), p.41-51 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393 |
container_end_page | 51 |
container_issue | 2 |
container_start_page | 41 |
container_title | Computer (Long Beach, Calif.) |
container_volume | 52 |
creator | Siddique, Kamran Akhtar, Zahid Aslam Khan, Farrukh Kim, Yangwoo |
description | Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns. |
doi_str_mv | 10.1109/MC.2018.2888764 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MC_2018_2888764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672520</ieee_id><sourcerecordid>2196844066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</originalsourceid><addsrcrecordid>eNpFkM1PwzAMxSMEEmNw5sAlEuduSdqkCbep5WOCARpwjtrU1TpGW5IUxH9Ppk1w8rP9e7b0EDqnZEIpUdNFNmGEygmTUqYiOUAjyrmMiKTJIRqRsIoUFewYnTi3Dm0ieTxC1X2e42zosVI4L3yBX8C7KzzDz2BdD8Y3X4C7FvsV4GW3Cbr-53DT4kfw3519x_PW28E1Ac3Bb31BLcFBYc3qFB3VxcbB2b6O0dvN9Wt2Fz083c6z2UNkmFQ-kkqUQkmeGF4XJA2FUkUYiyuWVFVFWGlKIgAKRQ0VXHEaRnUqqxLKtIxVPEaXu7u97T4HcF6vu8G24aVmVAmZJESIQE13lLGdcxZq3dvmo7A_mhK9jVIvMr2NUu-jDI6LnaMBgD9aipRxRuJfNcls7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196844066</pqid></control><display><type>article</type><title>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Siddique, Kamran ; Akhtar, Zahid ; Aslam Khan, Farrukh ; Kim, Yangwoo</creator><creatorcontrib>Siddique, Kamran ; Akhtar, Zahid ; Aslam Khan, Farrukh ; Kim, Yangwoo</creatorcontrib><description>Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.</description><identifier>ISSN: 0018-9162</identifier><identifier>EISSN: 1558-0814</identifier><identifier>DOI: 10.1109/MC.2018.2888764</identifier><identifier>CODEN: CPTRB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cybersecurity ; Data mining ; Datasets ; Feature extraction ; Intrusion detection ; Intrusion detection systems ; Machine learning ; Principal component analysis ; Support vector machines ; Training data</subject><ispartof>Computer (Long Beach, Calif.), 2019-02, Vol.52 (2), p.41-51</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</citedby><cites>FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</cites><orcidid>0000-0002-5026-5416 ; 0000-0002-7023-7172 ; 0000-0003-2286-1728 ; 0000-0002-4038-3267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Aslam Khan, Farrukh</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><title>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</title><title>Computer (Long Beach, Calif.)</title><addtitle>MC</addtitle><description>Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.</description><subject>Cybersecurity</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Principal component analysis</subject><subject>Support vector machines</subject><subject>Training data</subject><issn>0018-9162</issn><issn>1558-0814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkM1PwzAMxSMEEmNw5sAlEuduSdqkCbep5WOCARpwjtrU1TpGW5IUxH9Ppk1w8rP9e7b0EDqnZEIpUdNFNmGEygmTUqYiOUAjyrmMiKTJIRqRsIoUFewYnTi3Dm0ieTxC1X2e42zosVI4L3yBX8C7KzzDz2BdD8Y3X4C7FvsV4GW3Cbr-53DT4kfw3519x_PW28E1Ac3Bb31BLcFBYc3qFB3VxcbB2b6O0dvN9Wt2Fz083c6z2UNkmFQ-kkqUQkmeGF4XJA2FUkUYiyuWVFVFWGlKIgAKRQ0VXHEaRnUqqxLKtIxVPEaXu7u97T4HcF6vu8G24aVmVAmZJESIQE13lLGdcxZq3dvmo7A_mhK9jVIvMr2NUu-jDI6LnaMBgD9aipRxRuJfNcls7w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Siddique, Kamran</creator><creator>Akhtar, Zahid</creator><creator>Aslam Khan, Farrukh</creator><creator>Kim, Yangwoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5026-5416</orcidid><orcidid>https://orcid.org/0000-0002-7023-7172</orcidid><orcidid>https://orcid.org/0000-0003-2286-1728</orcidid><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid></search><sort><creationdate>20190201</creationdate><title>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</title><author>Siddique, Kamran ; Akhtar, Zahid ; Aslam Khan, Farrukh ; Kim, Yangwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cybersecurity</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Principal component analysis</topic><topic>Support vector machines</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Aslam Khan, Farrukh</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer (Long Beach, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddique, Kamran</au><au>Akhtar, Zahid</au><au>Aslam Khan, Farrukh</au><au>Kim, Yangwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</atitle><jtitle>Computer (Long Beach, Calif.)</jtitle><stitle>MC</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>52</volume><issue>2</issue><spage>41</spage><epage>51</epage><pages>41-51</pages><issn>0018-9162</issn><eissn>1558-0814</eissn><coden>CPTRB4</coden><abstract>Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MC.2018.2888764</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5026-5416</orcidid><orcidid>https://orcid.org/0000-0002-7023-7172</orcidid><orcidid>https://orcid.org/0000-0003-2286-1728</orcidid><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9162 |
ispartof | Computer (Long Beach, Calif.), 2019-02, Vol.52 (2), p.41-51 |
issn | 0018-9162 1558-0814 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MC_2018_2888764 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cybersecurity Data mining Datasets Feature extraction Intrusion detection Intrusion detection systems Machine learning Principal component analysis Support vector machines Training data |
title | KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KDD%20Cup%2099%20Data%20Sets:%20A%20Perspective%20on%20the%20Role%20of%20Data%20Sets%20in%20Network%20Intrusion%20Detection%20Research&rft.jtitle=Computer%20(Long%20Beach,%20Calif.)&rft.au=Siddique,%20Kamran&rft.date=2019-02-01&rft.volume=52&rft.issue=2&rft.spage=41&rft.epage=51&rft.pages=41-51&rft.issn=0018-9162&rft.eissn=1558-0814&rft.coden=CPTRB4&rft_id=info:doi/10.1109/MC.2018.2888764&rft_dat=%3Cproquest_cross%3E2196844066%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196844066&rft_id=info:pmid/&rft_ieee_id=8672520&rfr_iscdi=true |