Loading…

KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research

Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.

Saved in:
Bibliographic Details
Published in:Computer (Long Beach, Calif.) Calif.), 2019-02, Vol.52 (2), p.41-51
Main Authors: Siddique, Kamran, Akhtar, Zahid, Aslam Khan, Farrukh, Kim, Yangwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393
cites cdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393
container_end_page 51
container_issue 2
container_start_page 41
container_title Computer (Long Beach, Calif.)
container_volume 52
creator Siddique, Kamran
Akhtar, Zahid
Aslam Khan, Farrukh
Kim, Yangwoo
description Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.
doi_str_mv 10.1109/MC.2018.2888764
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MC_2018_2888764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672520</ieee_id><sourcerecordid>2196844066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</originalsourceid><addsrcrecordid>eNpFkM1PwzAMxSMEEmNw5sAlEuduSdqkCbep5WOCARpwjtrU1TpGW5IUxH9Ppk1w8rP9e7b0EDqnZEIpUdNFNmGEygmTUqYiOUAjyrmMiKTJIRqRsIoUFewYnTi3Dm0ieTxC1X2e42zosVI4L3yBX8C7KzzDz2BdD8Y3X4C7FvsV4GW3Cbr-53DT4kfw3519x_PW28E1Ac3Bb31BLcFBYc3qFB3VxcbB2b6O0dvN9Wt2Fz083c6z2UNkmFQ-kkqUQkmeGF4XJA2FUkUYiyuWVFVFWGlKIgAKRQ0VXHEaRnUqqxLKtIxVPEaXu7u97T4HcF6vu8G24aVmVAmZJESIQE13lLGdcxZq3dvmo7A_mhK9jVIvMr2NUu-jDI6LnaMBgD9aipRxRuJfNcls7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196844066</pqid></control><display><type>article</type><title>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Siddique, Kamran ; Akhtar, Zahid ; Aslam Khan, Farrukh ; Kim, Yangwoo</creator><creatorcontrib>Siddique, Kamran ; Akhtar, Zahid ; Aslam Khan, Farrukh ; Kim, Yangwoo</creatorcontrib><description>Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.</description><identifier>ISSN: 0018-9162</identifier><identifier>EISSN: 1558-0814</identifier><identifier>DOI: 10.1109/MC.2018.2888764</identifier><identifier>CODEN: CPTRB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cybersecurity ; Data mining ; Datasets ; Feature extraction ; Intrusion detection ; Intrusion detection systems ; Machine learning ; Principal component analysis ; Support vector machines ; Training data</subject><ispartof>Computer (Long Beach, Calif.), 2019-02, Vol.52 (2), p.41-51</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</citedby><cites>FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</cites><orcidid>0000-0002-5026-5416 ; 0000-0002-7023-7172 ; 0000-0003-2286-1728 ; 0000-0002-4038-3267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Aslam Khan, Farrukh</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><title>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</title><title>Computer (Long Beach, Calif.)</title><addtitle>MC</addtitle><description>Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.</description><subject>Cybersecurity</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Intrusion detection</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Principal component analysis</subject><subject>Support vector machines</subject><subject>Training data</subject><issn>0018-9162</issn><issn>1558-0814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkM1PwzAMxSMEEmNw5sAlEuduSdqkCbep5WOCARpwjtrU1TpGW5IUxH9Ppk1w8rP9e7b0EDqnZEIpUdNFNmGEygmTUqYiOUAjyrmMiKTJIRqRsIoUFewYnTi3Dm0ieTxC1X2e42zosVI4L3yBX8C7KzzDz2BdD8Y3X4C7FvsV4GW3Cbr-53DT4kfw3519x_PW28E1Ac3Bb31BLcFBYc3qFB3VxcbB2b6O0dvN9Wt2Fz083c6z2UNkmFQ-kkqUQkmeGF4XJA2FUkUYiyuWVFVFWGlKIgAKRQ0VXHEaRnUqqxLKtIxVPEaXu7u97T4HcF6vu8G24aVmVAmZJESIQE13lLGdcxZq3dvmo7A_mhK9jVIvMr2NUu-jDI6LnaMBgD9aipRxRuJfNcls7w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Siddique, Kamran</creator><creator>Akhtar, Zahid</creator><creator>Aslam Khan, Farrukh</creator><creator>Kim, Yangwoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5026-5416</orcidid><orcidid>https://orcid.org/0000-0002-7023-7172</orcidid><orcidid>https://orcid.org/0000-0003-2286-1728</orcidid><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid></search><sort><creationdate>20190201</creationdate><title>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</title><author>Siddique, Kamran ; Akhtar, Zahid ; Aslam Khan, Farrukh ; Kim, Yangwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cybersecurity</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Intrusion detection</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Principal component analysis</topic><topic>Support vector machines</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Aslam Khan, Farrukh</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer (Long Beach, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddique, Kamran</au><au>Akhtar, Zahid</au><au>Aslam Khan, Farrukh</au><au>Kim, Yangwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research</atitle><jtitle>Computer (Long Beach, Calif.)</jtitle><stitle>MC</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>52</volume><issue>2</issue><spage>41</spage><epage>51</epage><pages>41-51</pages><issn>0018-9162</issn><eissn>1558-0814</eissn><coden>CPTRB4</coden><abstract>Many consider the KDD Cup 99 data sets to be outdated and inadequate. Therefore, the extensive use of these data sets in recent studies to evaluate network intrusion detection systems is a matter of concern. We contribute to the literature by addressing these concerns.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MC.2018.2888764</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5026-5416</orcidid><orcidid>https://orcid.org/0000-0002-7023-7172</orcidid><orcidid>https://orcid.org/0000-0003-2286-1728</orcidid><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9162
ispartof Computer (Long Beach, Calif.), 2019-02, Vol.52 (2), p.41-51
issn 0018-9162
1558-0814
language eng
recordid cdi_crossref_primary_10_1109_MC_2018_2888764
source IEEE Electronic Library (IEL) Journals
subjects Cybersecurity
Data mining
Datasets
Feature extraction
Intrusion detection
Intrusion detection systems
Machine learning
Principal component analysis
Support vector machines
Training data
title KDD Cup 99 Data Sets: A Perspective on the Role of Data Sets in Network Intrusion Detection Research
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KDD%20Cup%2099%20Data%20Sets:%20A%20Perspective%20on%20the%20Role%20of%20Data%20Sets%20in%20Network%20Intrusion%20Detection%20Research&rft.jtitle=Computer%20(Long%20Beach,%20Calif.)&rft.au=Siddique,%20Kamran&rft.date=2019-02-01&rft.volume=52&rft.issue=2&rft.spage=41&rft.epage=51&rft.pages=41-51&rft.issn=0018-9162&rft.eissn=1558-0814&rft.coden=CPTRB4&rft_id=info:doi/10.1109/MC.2018.2888764&rft_dat=%3Cproquest_cross%3E2196844066%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-896b69854c5fa074c51190223d24ddd02bcb06eea91c16595102bf78dbeb7b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196844066&rft_id=info:pmid/&rft_ieee_id=8672520&rfr_iscdi=true