Loading…
An Online Multistep-Forward Voltage-Prediction Approach Based on an LSTM-TD Model and KF Algorithm
We propose a multistep-forward voltage-prediction approach combining a long short-term memory time-distributed model and the Kalman filter algorithm to improve prediction efficiency and reduce the demand for computing capability.
Saved in:
Published in: | Computer (Long Beach, Calif.) Calif.), 2021-08, Vol.54 (8), p.56-65 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-29303b37735dc0ae0de10752ebe885a67f4c446bc3ae645355710a141b7c1333 |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-29303b37735dc0ae0de10752ebe885a67f4c446bc3ae645355710a141b7c1333 |
container_end_page | 65 |
container_issue | 8 |
container_start_page | 56 |
container_title | Computer (Long Beach, Calif.) |
container_volume | 54 |
creator | Ni, Ye Xia, Zhilong Zhao, Fangtong Fang, Chunrong Chen, Zhenyu |
description | We propose a multistep-forward voltage-prediction approach combining a long short-term memory time-distributed model and the Kalman filter algorithm to improve prediction efficiency and reduce the demand for computing capability. |
doi_str_mv | 10.1109/MC.2021.3070314 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MC_2021_3070314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9504495</ieee_id><sourcerecordid>2557984065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-29303b37735dc0ae0de10752ebe885a67f4c446bc3ae645355710a141b7c1333</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKdnD14CnrMlTdKmx1qdiisTLF5Dmr5tHV1T0w7xvzey4enxPn7fex8fQreMzhij6bzIZxGN2IzThHImztCESakIVUycowmlTJGUxdEluhqGXViFknyCqqzDq65tOsDFoR2bYYSeLJz_Nr7Gn64dzQbIu4e6sWPjOpz1vXfGbvGDGaDGQTEdXn6UBSkfceFqaINQ47cFztqN88243V-ji7VpB7g5zSkqF09l_kKWq-fXPFsSG6l0JFHKKa94knBZW2qA1sBoIiOoQClp4mQtrBBxZbmBWEguZcKoYYJViWWc8ym6P54NAb8OMIx65w6-Cx91FNhUCRrLQM2PlPVuGDysde-bvfE_mlH916Mucv3Xoz71GBx3R0cDAP90KqkQqeS_gdVrxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557984065</pqid></control><display><type>article</type><title>An Online Multistep-Forward Voltage-Prediction Approach Based on an LSTM-TD Model and KF Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ni, Ye ; Xia, Zhilong ; Zhao, Fangtong ; Fang, Chunrong ; Chen, Zhenyu</creator><creatorcontrib>Ni, Ye ; Xia, Zhilong ; Zhao, Fangtong ; Fang, Chunrong ; Chen, Zhenyu</creatorcontrib><description>We propose a multistep-forward voltage-prediction approach combining a long short-term memory time-distributed model and the Kalman filter algorithm to improve prediction efficiency and reduce the demand for computing capability.</description><identifier>ISSN: 0018-9162</identifier><identifier>EISSN: 1558-0814</identifier><identifier>DOI: 10.1109/MC.2021.3070314</identifier><identifier>CODEN: CPTRB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational modeling ; Distributed memory ; Electric potential ; Kalman filters ; Memory management ; Prediction algorithms ; Predictive models ; Voltage</subject><ispartof>Computer (Long Beach, Calif.), 2021-08, Vol.54 (8), p.56-65</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-29303b37735dc0ae0de10752ebe885a67f4c446bc3ae645355710a141b7c1333</citedby><cites>FETCH-LOGICAL-c289t-29303b37735dc0ae0de10752ebe885a67f4c446bc3ae645355710a141b7c1333</cites><orcidid>0000-0002-9592-7022 ; 0000-0002-9930-7111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9504495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ni, Ye</creatorcontrib><creatorcontrib>Xia, Zhilong</creatorcontrib><creatorcontrib>Zhao, Fangtong</creatorcontrib><creatorcontrib>Fang, Chunrong</creatorcontrib><creatorcontrib>Chen, Zhenyu</creatorcontrib><title>An Online Multistep-Forward Voltage-Prediction Approach Based on an LSTM-TD Model and KF Algorithm</title><title>Computer (Long Beach, Calif.)</title><addtitle>MC</addtitle><description>We propose a multistep-forward voltage-prediction approach combining a long short-term memory time-distributed model and the Kalman filter algorithm to improve prediction efficiency and reduce the demand for computing capability.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Distributed memory</subject><subject>Electric potential</subject><subject>Kalman filters</subject><subject>Memory management</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Voltage</subject><issn>0018-9162</issn><issn>1558-0814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUxoMoOKdnD14CnrMlTdKmx1qdiisTLF5Dmr5tHV1T0w7xvzey4enxPn7fex8fQreMzhij6bzIZxGN2IzThHImztCESakIVUycowmlTJGUxdEluhqGXViFknyCqqzDq65tOsDFoR2bYYSeLJz_Nr7Gn64dzQbIu4e6sWPjOpz1vXfGbvGDGaDGQTEdXn6UBSkfceFqaINQ47cFztqN88243V-ji7VpB7g5zSkqF09l_kKWq-fXPFsSG6l0JFHKKa94knBZW2qA1sBoIiOoQClp4mQtrBBxZbmBWEguZcKoYYJViWWc8ym6P54NAb8OMIx65w6-Cx91FNhUCRrLQM2PlPVuGDysde-bvfE_mlH916Mucv3Xoz71GBx3R0cDAP90KqkQqeS_gdVrxg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ni, Ye</creator><creator>Xia, Zhilong</creator><creator>Zhao, Fangtong</creator><creator>Fang, Chunrong</creator><creator>Chen, Zhenyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9592-7022</orcidid><orcidid>https://orcid.org/0000-0002-9930-7111</orcidid></search><sort><creationdate>20210801</creationdate><title>An Online Multistep-Forward Voltage-Prediction Approach Based on an LSTM-TD Model and KF Algorithm</title><author>Ni, Ye ; Xia, Zhilong ; Zhao, Fangtong ; Fang, Chunrong ; Chen, Zhenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-29303b37735dc0ae0de10752ebe885a67f4c446bc3ae645355710a141b7c1333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Distributed memory</topic><topic>Electric potential</topic><topic>Kalman filters</topic><topic>Memory management</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Ye</creatorcontrib><creatorcontrib>Xia, Zhilong</creatorcontrib><creatorcontrib>Zhao, Fangtong</creatorcontrib><creatorcontrib>Fang, Chunrong</creatorcontrib><creatorcontrib>Chen, Zhenyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer (Long Beach, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Ye</au><au>Xia, Zhilong</au><au>Zhao, Fangtong</au><au>Fang, Chunrong</au><au>Chen, Zhenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Online Multistep-Forward Voltage-Prediction Approach Based on an LSTM-TD Model and KF Algorithm</atitle><jtitle>Computer (Long Beach, Calif.)</jtitle><stitle>MC</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>54</volume><issue>8</issue><spage>56</spage><epage>65</epage><pages>56-65</pages><issn>0018-9162</issn><eissn>1558-0814</eissn><coden>CPTRB4</coden><abstract>We propose a multistep-forward voltage-prediction approach combining a long short-term memory time-distributed model and the Kalman filter algorithm to improve prediction efficiency and reduce the demand for computing capability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MC.2021.3070314</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9592-7022</orcidid><orcidid>https://orcid.org/0000-0002-9930-7111</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9162 |
ispartof | Computer (Long Beach, Calif.), 2021-08, Vol.54 (8), p.56-65 |
issn | 0018-9162 1558-0814 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MC_2021_3070314 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Computational modeling Distributed memory Electric potential Kalman filters Memory management Prediction algorithms Predictive models Voltage |
title | An Online Multistep-Forward Voltage-Prediction Approach Based on an LSTM-TD Model and KF Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Online%20Multistep-Forward%20Voltage-Prediction%20Approach%20Based%20on%20an%20LSTM-TD%20Model%20and%20KF%20Algorithm&rft.jtitle=Computer%20(Long%20Beach,%20Calif.)&rft.au=Ni,%20Ye&rft.date=2021-08-01&rft.volume=54&rft.issue=8&rft.spage=56&rft.epage=65&rft.pages=56-65&rft.issn=0018-9162&rft.eissn=1558-0814&rft.coden=CPTRB4&rft_id=info:doi/10.1109/MC.2021.3070314&rft_dat=%3Cproquest_cross%3E2557984065%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-29303b37735dc0ae0de10752ebe885a67f4c446bc3ae645355710a141b7c1333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557984065&rft_id=info:pmid/&rft_ieee_id=9504495&rfr_iscdi=true |