Loading…
DNA-Inspired Online Behavioral Modeling and Its Application to Spambot Detection
A novel, simple, and effective approach to modeling online user behavior extracts and analyzes digital DNA sequences from user online actions and uses Twitter as a benchmark to test the proposal. Specifically, the model obtains an incisive and compact DNA-inspired characterization of user actions. T...
Saved in:
Published in: | IEEE intelligent systems 2016-09, Vol.31 (5), p.58-64 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel, simple, and effective approach to modeling online user behavior extracts and analyzes digital DNA sequences from user online actions and uses Twitter as a benchmark to test the proposal. Specifically, the model obtains an incisive and compact DNA-inspired characterization of user actions. Then, standard DNA analysis techniques discriminate between genuine and spambot accounts on Twitter. An experimental campaign supports the proposal, showing its effectiveness and viability. Although Twitter spambot detection is a specific use case on a specific social media platform, the proposed methodology is platform and technology agnostic, paving the way for diverse behavioral characterization tasks. |
---|---|
ISSN: | 1541-1672 1941-1294 |
DOI: | 10.1109/MIS.2016.29 |