Loading…

Applied Machine Learning Strategies

Recent advances in machine learning (ML), fueled by new frameworks and algorithms, more powerful computing architectures, scalable cloud-based services, and availability of large-scale data sets, have enabled scientists and engineers to tackle more complex problems than ever before. Computer hardwar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE potentials 2020-05, Vol.39 (3), p.38-42
Main Authors: Israel, Steven A., Sallee, Philip, Tanner, Franklin, Goldstein, Jonathan, Zabel, Shane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c160t-799d5263b13f2fe4c4152b4063e1d9d6674b35e8dabe15bcaa22d034414719773
container_end_page 42
container_issue 3
container_start_page 38
container_title IEEE potentials
container_volume 39
creator Israel, Steven A.
Sallee, Philip
Tanner, Franklin
Goldstein, Jonathan
Zabel, Shane
description Recent advances in machine learning (ML), fueled by new frameworks and algorithms, more powerful computing architectures, scalable cloud-based services, and availability of large-scale data sets, have enabled scientists and engineers to tackle more complex problems than ever before. Computer hardware has made tremendous leaps in processing power, bit depth, caching, and storage. Graphics processing units, developed originally for the gaming industry, provide a parallel processing capability that is ideally suited to computer vision (CV) and the simulation of artificial neural networks. The expansion to cloud-based services allows researchers virtually unlimited scaling of resources to tackle problems having millions of input attributes, with output domains up to thousands of potentially nonexclusive classes.
doi_str_mv 10.1109/MPOT.2019.2927899
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MPOT_2019_2927899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9086834</ieee_id><sourcerecordid>2400103398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-799d5263b13f2fe4c4152b4063e1d9d6674b35e8dabe15bcaa22d034414719773</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRMFZ_gHgp9Jy4s997LMUvSKlgPS-bZFJTahp304P_3oQUTwPD874zPITcA80AqH1cv2-2GaNgM2aZNtZekASkNClozS5JQodlqpQw1-Qmxj2lICSXCVksu-7QYDVf-_KraXGeow9t0-7mH33wPe4ajLfkqvaHiHfnOSOfz0_b1Wuab17eVss8LUHRPtXWVpIpXgCvWY2iFCBZIajiCJWtlNKi4BJN5QsEWZTeM1ZRLgQIDVZrPiOLqbcLx58Txt7tj6fQDicdE8PHlHNrBgomqgzHGAPWrgvNtw-_DqgbXbjRhRtduLOLIfMwZRpE_OctNcpwwf8ANDFYMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400103398</pqid></control><display><type>article</type><title>Applied Machine Learning Strategies</title><source>IEEE Xplore (Online service)</source><creator>Israel, Steven A. ; Sallee, Philip ; Tanner, Franklin ; Goldstein, Jonathan ; Zabel, Shane</creator><creatorcontrib>Israel, Steven A. ; Sallee, Philip ; Tanner, Franklin ; Goldstein, Jonathan ; Zabel, Shane</creatorcontrib><description>Recent advances in machine learning (ML), fueled by new frameworks and algorithms, more powerful computing architectures, scalable cloud-based services, and availability of large-scale data sets, have enabled scientists and engineers to tackle more complex problems than ever before. Computer hardware has made tremendous leaps in processing power, bit depth, caching, and storage. Graphics processing units, developed originally for the gaming industry, provide a parallel processing capability that is ideally suited to computer vision (CV) and the simulation of artificial neural networks. The expansion to cloud-based services allows researchers virtually unlimited scaling of resources to tackle problems having millions of input attributes, with output domains up to thousands of potentially nonexclusive classes.</description><identifier>ISSN: 0278-6648</identifier><identifier>EISSN: 1558-1772</identifier><identifier>DOI: 10.1109/MPOT.2019.2927899</identifier><identifier>CODEN: IEPTDF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Automobiles ; Caching ; Cloud computing ; Computer simulation ; Computer vision ; Gallium nitride ; Generators ; Graphics processing units ; Machine learning ; Neural networks ; Parallel processing ; Training ; Training data</subject><ispartof>IEEE potentials, 2020-05, Vol.39 (3), p.38-42</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c160t-799d5263b13f2fe4c4152b4063e1d9d6674b35e8dabe15bcaa22d034414719773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9086834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Israel, Steven A.</creatorcontrib><creatorcontrib>Sallee, Philip</creatorcontrib><creatorcontrib>Tanner, Franklin</creatorcontrib><creatorcontrib>Goldstein, Jonathan</creatorcontrib><creatorcontrib>Zabel, Shane</creatorcontrib><title>Applied Machine Learning Strategies</title><title>IEEE potentials</title><addtitle>MPOT</addtitle><description>Recent advances in machine learning (ML), fueled by new frameworks and algorithms, more powerful computing architectures, scalable cloud-based services, and availability of large-scale data sets, have enabled scientists and engineers to tackle more complex problems than ever before. Computer hardware has made tremendous leaps in processing power, bit depth, caching, and storage. Graphics processing units, developed originally for the gaming industry, provide a parallel processing capability that is ideally suited to computer vision (CV) and the simulation of artificial neural networks. The expansion to cloud-based services allows researchers virtually unlimited scaling of resources to tackle problems having millions of input attributes, with output domains up to thousands of potentially nonexclusive classes.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automobiles</subject><subject>Caching</subject><subject>Cloud computing</subject><subject>Computer simulation</subject><subject>Computer vision</subject><subject>Gallium nitride</subject><subject>Generators</subject><subject>Graphics processing units</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Parallel processing</subject><subject>Training</subject><subject>Training data</subject><issn>0278-6648</issn><issn>1558-1772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRMFZ_gHgp9Jy4s997LMUvSKlgPS-bZFJTahp304P_3oQUTwPD874zPITcA80AqH1cv2-2GaNgM2aZNtZekASkNClozS5JQodlqpQw1-Qmxj2lICSXCVksu-7QYDVf-_KraXGeow9t0-7mH33wPe4ajLfkqvaHiHfnOSOfz0_b1Wuab17eVss8LUHRPtXWVpIpXgCvWY2iFCBZIajiCJWtlNKi4BJN5QsEWZTeM1ZRLgQIDVZrPiOLqbcLx58Txt7tj6fQDicdE8PHlHNrBgomqgzHGAPWrgvNtw-_DqgbXbjRhRtduLOLIfMwZRpE_OctNcpwwf8ANDFYMA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Israel, Steven A.</creator><creator>Sallee, Philip</creator><creator>Tanner, Franklin</creator><creator>Goldstein, Jonathan</creator><creator>Zabel, Shane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20200501</creationdate><title>Applied Machine Learning Strategies</title><author>Israel, Steven A. ; Sallee, Philip ; Tanner, Franklin ; Goldstein, Jonathan ; Zabel, Shane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-799d5263b13f2fe4c4152b4063e1d9d6674b35e8dabe15bcaa22d034414719773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automobiles</topic><topic>Caching</topic><topic>Cloud computing</topic><topic>Computer simulation</topic><topic>Computer vision</topic><topic>Gallium nitride</topic><topic>Generators</topic><topic>Graphics processing units</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Parallel processing</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Israel, Steven A.</creatorcontrib><creatorcontrib>Sallee, Philip</creatorcontrib><creatorcontrib>Tanner, Franklin</creatorcontrib><creatorcontrib>Goldstein, Jonathan</creatorcontrib><creatorcontrib>Zabel, Shane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE potentials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Israel, Steven A.</au><au>Sallee, Philip</au><au>Tanner, Franklin</au><au>Goldstein, Jonathan</au><au>Zabel, Shane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applied Machine Learning Strategies</atitle><jtitle>IEEE potentials</jtitle><stitle>MPOT</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>3</issue><spage>38</spage><epage>42</epage><pages>38-42</pages><issn>0278-6648</issn><eissn>1558-1772</eissn><coden>IEPTDF</coden><abstract>Recent advances in machine learning (ML), fueled by new frameworks and algorithms, more powerful computing architectures, scalable cloud-based services, and availability of large-scale data sets, have enabled scientists and engineers to tackle more complex problems than ever before. Computer hardware has made tremendous leaps in processing power, bit depth, caching, and storage. Graphics processing units, developed originally for the gaming industry, provide a parallel processing capability that is ideally suited to computer vision (CV) and the simulation of artificial neural networks. The expansion to cloud-based services allows researchers virtually unlimited scaling of resources to tackle problems having millions of input attributes, with output domains up to thousands of potentially nonexclusive classes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MPOT.2019.2927899</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-6648
ispartof IEEE potentials, 2020-05, Vol.39 (3), p.38-42
issn 0278-6648
1558-1772
language eng
recordid cdi_crossref_primary_10_1109_MPOT_2019_2927899
source IEEE Xplore (Online service)
subjects Algorithms
Artificial neural networks
Automobiles
Caching
Cloud computing
Computer simulation
Computer vision
Gallium nitride
Generators
Graphics processing units
Machine learning
Neural networks
Parallel processing
Training
Training data
title Applied Machine Learning Strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applied%20Machine%20Learning%20Strategies&rft.jtitle=IEEE%20potentials&rft.au=Israel,%20Steven%20A.&rft.date=2020-05-01&rft.volume=39&rft.issue=3&rft.spage=38&rft.epage=42&rft.pages=38-42&rft.issn=0278-6648&rft.eissn=1558-1772&rft.coden=IEPTDF&rft_id=info:doi/10.1109/MPOT.2019.2927899&rft_dat=%3Cproquest_cross%3E2400103398%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c160t-799d5263b13f2fe4c4152b4063e1d9d6674b35e8dabe15bcaa22d034414719773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2400103398&rft_id=info:pmid/&rft_ieee_id=9086834&rfr_iscdi=true