Loading…
Thévenin Equivalent Circuits for Modeling Coupled Common/Differential-Mode Behavior in Power Electronic Systems
Modeling the unintended common- and differential-mode (CM and DM) behavior of multi-converter power electronic-based systems can be a challenge. Chief among the issues is the need for detailed knowledge of the converter hardware to determine model parameters. In this paper, a focus is on the derivat...
Saved in:
Published in: | IEEE open access journal of power and energy 2021, Vol.8, p.377-388 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modeling the unintended common- and differential-mode (CM and DM) behavior of multi-converter power electronic-based systems can be a challenge. Chief among the issues is the need for detailed knowledge of the converter hardware to determine model parameters. In this paper, a focus is on the derivation of Thévenin-based models that only require characterization at the converter terminals. Periodic linear time varying system analysis is first used to derive and consider the applicability such models. Subsequently, methods to experimentally characterize Thévenin parameters are established. The modeling approach is then used to establish worst-case predictions of CM/DM behavior of a microgrid which is validated using both time-domain simulation and hardware experiment. |
---|---|
ISSN: | 2687-7910 2687-7910 2644-1314 |
DOI: | 10.1109/OAJPE.2021.3116099 |