Loading…

Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications

Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key ben...

Full description

Saved in:
Bibliographic Details
Published in:IEEE open journal of nanotechnology 2022, Vol.3, p.52-60
Main Authors: Hassan, Akeeb, Soroushiani, Sepehr, Abdal, Abdulhameed, Sayeed, Sk Yeahia Been, Lin, Wei-Chiang, Pulugurtha, Markondeya Raj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203
container_end_page 60
container_issue
container_start_page 52
container_title IEEE open journal of nanotechnology
container_volume 3
creator Hassan, Akeeb
Soroushiani, Sepehr
Abdal, Abdulhameed
Sayeed, Sk Yeahia Been
Lin, Wei-Chiang
Pulugurtha, Markondeya Raj
description Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.
doi_str_mv 10.1109/OJNANO.2022.3163386
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJNANO_2022_3163386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9745373</ieee_id><doaj_id>oai_doaj_org_article_b2381df992cf4f92af8c7aedb2bf197f</doaj_id><sourcerecordid>2659346578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203</originalsourceid><addsrcrecordid>eNpNUcFOAjEU3BhNJMgXcNnE82L72m23RyQgGAIe9Ny03RaLsF27y8G_d3EJ8fTmvczMm2SSZIzRBGMknravm-lmOwEEMCGYEVKwm2QAjNIMg4Dbf_g-GTXNHiEEOcaYoEGynB-1LUtbZrNwrENlqzZ9O6hKxXShqmx76lZlvtTOV7vUhZg--1B_hjZU3qTTuj54o1ofquYhuXPq0NjRZQ6Tj8X8fbbM1tuX1Wy6zgzJizYToiywZpQBUoITrQkzRiOOsKH0nMqSEmlwAlMoiNCoQ5xzCo4JhwGRYbLqfcug9rKO_qjijwzKy79DiDupYuvNwUoNpMClEwKMo06AcoXhypYatMOCu87rsfeqY_g-2aaV-3CKVRdfAssFoSznRcciPcvE0DTRuutXjOS5Adk3IM8NyEsDnWrcq7y19qoQnOaEE_ILat6AOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659346578</pqid></control><display><type>article</type><title>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</title><source>IEEE Xplore Open Access Journals</source><creator>Hassan, Akeeb ; Soroushiani, Sepehr ; Abdal, Abdulhameed ; Sayeed, Sk Yeahia Been ; Lin, Wei-Chiang ; Pulugurtha, Markondeya Raj</creator><creatorcontrib>Hassan, Akeeb ; Soroushiani, Sepehr ; Abdal, Abdulhameed ; Sayeed, Sk Yeahia Been ; Lin, Wei-Chiang ; Pulugurtha, Markondeya Raj</creatorcontrib><description>Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.</description><identifier>ISSN: 2644-1292</identifier><identifier>EISSN: 2644-1292</identifier><identifier>DOI: 10.1109/OJNANO.2022.3163386</identifier><identifier>CODEN: IOJNAY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biophotonics ; Configurations ; deformable ; die-embedding ; Elastomers ; Embedded systems ; Embedding ; Fan-out ; Fanout ; Flat surfaces ; flexible ; Flexible printed circuits ; High temperature ; Integrated circuit interconnections ; Interconnections ; interconnects ; Light sources ; Muscles ; Nanowires ; Packages ; Packaging ; Polyurethane resins ; Pulse rate ; Reliability ; Substrates ; Thickness</subject><ispartof>IEEE open journal of nanotechnology, 2022, Vol.3, p.52-60</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203</cites><orcidid>0000-0002-9298-7513 ; 0000-0001-6699-3330 ; 0000-0003-2706-1017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9745373$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hassan, Akeeb</creatorcontrib><creatorcontrib>Soroushiani, Sepehr</creatorcontrib><creatorcontrib>Abdal, Abdulhameed</creatorcontrib><creatorcontrib>Sayeed, Sk Yeahia Been</creatorcontrib><creatorcontrib>Lin, Wei-Chiang</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><title>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</title><title>IEEE open journal of nanotechnology</title><addtitle>OJNANO</addtitle><description>Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.</description><subject>Biophotonics</subject><subject>Configurations</subject><subject>deformable</subject><subject>die-embedding</subject><subject>Elastomers</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Fan-out</subject><subject>Fanout</subject><subject>Flat surfaces</subject><subject>flexible</subject><subject>Flexible printed circuits</subject><subject>High temperature</subject><subject>Integrated circuit interconnections</subject><subject>Interconnections</subject><subject>interconnects</subject><subject>Light sources</subject><subject>Muscles</subject><subject>Nanowires</subject><subject>Packages</subject><subject>Packaging</subject><subject>Polyurethane resins</subject><subject>Pulse rate</subject><subject>Reliability</subject><subject>Substrates</subject><subject>Thickness</subject><issn>2644-1292</issn><issn>2644-1292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOAjEU3BhNJMgXcNnE82L72m23RyQgGAIe9Ny03RaLsF27y8G_d3EJ8fTmvczMm2SSZIzRBGMknravm-lmOwEEMCGYEVKwm2QAjNIMg4Dbf_g-GTXNHiEEOcaYoEGynB-1LUtbZrNwrENlqzZ9O6hKxXShqmx76lZlvtTOV7vUhZg--1B_hjZU3qTTuj54o1ofquYhuXPq0NjRZQ6Tj8X8fbbM1tuX1Wy6zgzJizYToiywZpQBUoITrQkzRiOOsKH0nMqSEmlwAlMoiNCoQ5xzCo4JhwGRYbLqfcug9rKO_qjijwzKy79DiDupYuvNwUoNpMClEwKMo06AcoXhypYatMOCu87rsfeqY_g-2aaV-3CKVRdfAssFoSznRcciPcvE0DTRuutXjOS5Adk3IM8NyEsDnWrcq7y19qoQnOaEE_ILat6AOQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hassan, Akeeb</creator><creator>Soroushiani, Sepehr</creator><creator>Abdal, Abdulhameed</creator><creator>Sayeed, Sk Yeahia Been</creator><creator>Lin, Wei-Chiang</creator><creator>Pulugurtha, Markondeya Raj</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9298-7513</orcidid><orcidid>https://orcid.org/0000-0001-6699-3330</orcidid><orcidid>https://orcid.org/0000-0003-2706-1017</orcidid></search><sort><creationdate>2022</creationdate><title>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</title><author>Hassan, Akeeb ; Soroushiani, Sepehr ; Abdal, Abdulhameed ; Sayeed, Sk Yeahia Been ; Lin, Wei-Chiang ; Pulugurtha, Markondeya Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biophotonics</topic><topic>Configurations</topic><topic>deformable</topic><topic>die-embedding</topic><topic>Elastomers</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Fan-out</topic><topic>Fanout</topic><topic>Flat surfaces</topic><topic>flexible</topic><topic>Flexible printed circuits</topic><topic>High temperature</topic><topic>Integrated circuit interconnections</topic><topic>Interconnections</topic><topic>interconnects</topic><topic>Light sources</topic><topic>Muscles</topic><topic>Nanowires</topic><topic>Packages</topic><topic>Packaging</topic><topic>Polyurethane resins</topic><topic>Pulse rate</topic><topic>Reliability</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Akeeb</creatorcontrib><creatorcontrib>Soroushiani, Sepehr</creatorcontrib><creatorcontrib>Abdal, Abdulhameed</creatorcontrib><creatorcontrib>Sayeed, Sk Yeahia Been</creatorcontrib><creatorcontrib>Lin, Wei-Chiang</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Akeeb</au><au>Soroushiani, Sepehr</au><au>Abdal, Abdulhameed</au><au>Sayeed, Sk Yeahia Been</au><au>Lin, Wei-Chiang</au><au>Pulugurtha, Markondeya Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</atitle><jtitle>IEEE open journal of nanotechnology</jtitle><stitle>OJNANO</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>52</spage><epage>60</epage><pages>52-60</pages><issn>2644-1292</issn><eissn>2644-1292</eissn><coden>IOJNAY</coden><abstract>Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJNANO.2022.3163386</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9298-7513</orcidid><orcidid>https://orcid.org/0000-0001-6699-3330</orcidid><orcidid>https://orcid.org/0000-0003-2706-1017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1292
ispartof IEEE open journal of nanotechnology, 2022, Vol.3, p.52-60
issn 2644-1292
2644-1292
language eng
recordid cdi_crossref_primary_10_1109_OJNANO_2022_3163386
source IEEE Xplore Open Access Journals
subjects Biophotonics
Configurations
deformable
die-embedding
Elastomers
Embedded systems
Embedding
Fan-out
Fanout
Flat surfaces
flexible
Flexible printed circuits
High temperature
Integrated circuit interconnections
Interconnections
interconnects
Light sources
Muscles
Nanowires
Packages
Packaging
Polyurethane resins
Pulse rate
Reliability
Substrates
Thickness
title Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded-Component%20Planar%20Fan-Out%20Packaging%20for%20Biophotonic%20Applications&rft.jtitle=IEEE%20open%20journal%20of%20nanotechnology&rft.au=Hassan,%20Akeeb&rft.date=2022&rft.volume=3&rft.spage=52&rft.epage=60&rft.pages=52-60&rft.issn=2644-1292&rft.eissn=2644-1292&rft.coden=IOJNAY&rft_id=info:doi/10.1109/OJNANO.2022.3163386&rft_dat=%3Cproquest_cross%3E2659346578%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659346578&rft_id=info:pmid/&rft_ieee_id=9745373&rfr_iscdi=true