Loading…
Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications
Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key ben...
Saved in:
Published in: | IEEE open journal of nanotechnology 2022, Vol.3, p.52-60 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203 |
container_end_page | 60 |
container_issue | |
container_start_page | 52 |
container_title | IEEE open journal of nanotechnology |
container_volume | 3 |
creator | Hassan, Akeeb Soroushiani, Sepehr Abdal, Abdulhameed Sayeed, Sk Yeahia Been Lin, Wei-Chiang Pulugurtha, Markondeya Raj |
description | Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved. |
doi_str_mv | 10.1109/OJNANO.2022.3163386 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_OJNANO_2022_3163386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9745373</ieee_id><doaj_id>oai_doaj_org_article_b2381df992cf4f92af8c7aedb2bf197f</doaj_id><sourcerecordid>2659346578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203</originalsourceid><addsrcrecordid>eNpNUcFOAjEU3BhNJMgXcNnE82L72m23RyQgGAIe9Ny03RaLsF27y8G_d3EJ8fTmvczMm2SSZIzRBGMknravm-lmOwEEMCGYEVKwm2QAjNIMg4Dbf_g-GTXNHiEEOcaYoEGynB-1LUtbZrNwrENlqzZ9O6hKxXShqmx76lZlvtTOV7vUhZg--1B_hjZU3qTTuj54o1ofquYhuXPq0NjRZQ6Tj8X8fbbM1tuX1Wy6zgzJizYToiywZpQBUoITrQkzRiOOsKH0nMqSEmlwAlMoiNCoQ5xzCo4JhwGRYbLqfcug9rKO_qjijwzKy79DiDupYuvNwUoNpMClEwKMo06AcoXhypYatMOCu87rsfeqY_g-2aaV-3CKVRdfAssFoSznRcciPcvE0DTRuutXjOS5Adk3IM8NyEsDnWrcq7y19qoQnOaEE_ILat6AOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659346578</pqid></control><display><type>article</type><title>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</title><source>IEEE Xplore Open Access Journals</source><creator>Hassan, Akeeb ; Soroushiani, Sepehr ; Abdal, Abdulhameed ; Sayeed, Sk Yeahia Been ; Lin, Wei-Chiang ; Pulugurtha, Markondeya Raj</creator><creatorcontrib>Hassan, Akeeb ; Soroushiani, Sepehr ; Abdal, Abdulhameed ; Sayeed, Sk Yeahia Been ; Lin, Wei-Chiang ; Pulugurtha, Markondeya Raj</creatorcontrib><description>Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.</description><identifier>ISSN: 2644-1292</identifier><identifier>EISSN: 2644-1292</identifier><identifier>DOI: 10.1109/OJNANO.2022.3163386</identifier><identifier>CODEN: IOJNAY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biophotonics ; Configurations ; deformable ; die-embedding ; Elastomers ; Embedded systems ; Embedding ; Fan-out ; Fanout ; Flat surfaces ; flexible ; Flexible printed circuits ; High temperature ; Integrated circuit interconnections ; Interconnections ; interconnects ; Light sources ; Muscles ; Nanowires ; Packages ; Packaging ; Polyurethane resins ; Pulse rate ; Reliability ; Substrates ; Thickness</subject><ispartof>IEEE open journal of nanotechnology, 2022, Vol.3, p.52-60</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203</cites><orcidid>0000-0002-9298-7513 ; 0000-0001-6699-3330 ; 0000-0003-2706-1017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9745373$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Hassan, Akeeb</creatorcontrib><creatorcontrib>Soroushiani, Sepehr</creatorcontrib><creatorcontrib>Abdal, Abdulhameed</creatorcontrib><creatorcontrib>Sayeed, Sk Yeahia Been</creatorcontrib><creatorcontrib>Lin, Wei-Chiang</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><title>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</title><title>IEEE open journal of nanotechnology</title><addtitle>OJNANO</addtitle><description>Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.</description><subject>Biophotonics</subject><subject>Configurations</subject><subject>deformable</subject><subject>die-embedding</subject><subject>Elastomers</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Fan-out</subject><subject>Fanout</subject><subject>Flat surfaces</subject><subject>flexible</subject><subject>Flexible printed circuits</subject><subject>High temperature</subject><subject>Integrated circuit interconnections</subject><subject>Interconnections</subject><subject>interconnects</subject><subject>Light sources</subject><subject>Muscles</subject><subject>Nanowires</subject><subject>Packages</subject><subject>Packaging</subject><subject>Polyurethane resins</subject><subject>Pulse rate</subject><subject>Reliability</subject><subject>Substrates</subject><subject>Thickness</subject><issn>2644-1292</issn><issn>2644-1292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOAjEU3BhNJMgXcNnE82L72m23RyQgGAIe9Ny03RaLsF27y8G_d3EJ8fTmvczMm2SSZIzRBGMknravm-lmOwEEMCGYEVKwm2QAjNIMg4Dbf_g-GTXNHiEEOcaYoEGynB-1LUtbZrNwrENlqzZ9O6hKxXShqmx76lZlvtTOV7vUhZg--1B_hjZU3qTTuj54o1ofquYhuXPq0NjRZQ6Tj8X8fbbM1tuX1Wy6zgzJizYToiywZpQBUoITrQkzRiOOsKH0nMqSEmlwAlMoiNCoQ5xzCo4JhwGRYbLqfcug9rKO_qjijwzKy79DiDupYuvNwUoNpMClEwKMo06AcoXhypYatMOCu87rsfeqY_g-2aaV-3CKVRdfAssFoSznRcciPcvE0DTRuutXjOS5Adk3IM8NyEsDnWrcq7y19qoQnOaEE_ILat6AOQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hassan, Akeeb</creator><creator>Soroushiani, Sepehr</creator><creator>Abdal, Abdulhameed</creator><creator>Sayeed, Sk Yeahia Been</creator><creator>Lin, Wei-Chiang</creator><creator>Pulugurtha, Markondeya Raj</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9298-7513</orcidid><orcidid>https://orcid.org/0000-0001-6699-3330</orcidid><orcidid>https://orcid.org/0000-0003-2706-1017</orcidid></search><sort><creationdate>2022</creationdate><title>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</title><author>Hassan, Akeeb ; Soroushiani, Sepehr ; Abdal, Abdulhameed ; Sayeed, Sk Yeahia Been ; Lin, Wei-Chiang ; Pulugurtha, Markondeya Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biophotonics</topic><topic>Configurations</topic><topic>deformable</topic><topic>die-embedding</topic><topic>Elastomers</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Fan-out</topic><topic>Fanout</topic><topic>Flat surfaces</topic><topic>flexible</topic><topic>Flexible printed circuits</topic><topic>High temperature</topic><topic>Integrated circuit interconnections</topic><topic>Interconnections</topic><topic>interconnects</topic><topic>Light sources</topic><topic>Muscles</topic><topic>Nanowires</topic><topic>Packages</topic><topic>Packaging</topic><topic>Polyurethane resins</topic><topic>Pulse rate</topic><topic>Reliability</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Akeeb</creatorcontrib><creatorcontrib>Soroushiani, Sepehr</creatorcontrib><creatorcontrib>Abdal, Abdulhameed</creatorcontrib><creatorcontrib>Sayeed, Sk Yeahia Been</creatorcontrib><creatorcontrib>Lin, Wei-Chiang</creatorcontrib><creatorcontrib>Pulugurtha, Markondeya Raj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Akeeb</au><au>Soroushiani, Sepehr</au><au>Abdal, Abdulhameed</au><au>Sayeed, Sk Yeahia Been</au><au>Lin, Wei-Chiang</au><au>Pulugurtha, Markondeya Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications</atitle><jtitle>IEEE open journal of nanotechnology</jtitle><stitle>OJNANO</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>52</spage><epage>60</epage><pages>52-60</pages><issn>2644-1292</issn><eissn>2644-1292</eissn><coden>IOJNAY</coden><abstract>Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJNANO.2022.3163386</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9298-7513</orcidid><orcidid>https://orcid.org/0000-0001-6699-3330</orcidid><orcidid>https://orcid.org/0000-0003-2706-1017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1292 |
ispartof | IEEE open journal of nanotechnology, 2022, Vol.3, p.52-60 |
issn | 2644-1292 2644-1292 |
language | eng |
recordid | cdi_crossref_primary_10_1109_OJNANO_2022_3163386 |
source | IEEE Xplore Open Access Journals |
subjects | Biophotonics Configurations deformable die-embedding Elastomers Embedded systems Embedding Fan-out Fanout Flat surfaces flexible Flexible printed circuits High temperature Integrated circuit interconnections Interconnections interconnects Light sources Muscles Nanowires Packages Packaging Polyurethane resins Pulse rate Reliability Substrates Thickness |
title | Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded-Component%20Planar%20Fan-Out%20Packaging%20for%20Biophotonic%20Applications&rft.jtitle=IEEE%20open%20journal%20of%20nanotechnology&rft.au=Hassan,%20Akeeb&rft.date=2022&rft.volume=3&rft.spage=52&rft.epage=60&rft.pages=52-60&rft.issn=2644-1292&rft.eissn=2644-1292&rft.coden=IOJNAY&rft_id=info:doi/10.1109/OJNANO.2022.3163386&rft_dat=%3Cproquest_cross%3E2659346578%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-99d81b64620a973bb36ccb0701c442511e3d0b2f9142839b0f9177742f69f1203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659346578&rft_id=info:pmid/&rft_ieee_id=9745373&rfr_iscdi=true |