Loading…
Immunomechanobiology: Engineering the Activation and Function of Immune Cells with the Mechanical Signal of Fluid Shear Stress
Immunomechanobiology, the study of how physical forces influence the behavior and function of immune cells, is a rapidly growing area of research. It is becoming increasingly recognized that mechanical stimuli, such as fluid shear forces, are a critical determinant of immune cell regulation. In this...
Saved in:
Published in: | IEEE reviews in biomedical engineering 2024-11, p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Immunomechanobiology, the study of how physical forces influence the behavior and function of immune cells, is a rapidly growing area of research. It is becoming increasingly recognized that mechanical stimuli, such as fluid shear forces, are a critical determinant of immune cell regulation. In this review, we discuss the principles and significance of various mechanical forces present within the human body, with a focus on fluid shear flow and its impact on immune cell activation and function. Moreover, we discuss engineering approaches used to study immune cell mechanobiology, and their implications in health and diseases such as cancer, autoimmune disorders, and infectious disease. |
---|---|
ISSN: | 1937-3333 1941-1189 |
DOI: | 10.1109/RBME.2024.3505073 |