Loading…
Suboptimal linear regulators with incomplete state feedback
A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a)...
Saved in:
Published in: | IEEE transactions on automatic control 1970-06, Vol.15 (3), p.384-386 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3 |
container_end_page | 386 |
container_issue | 3 |
container_start_page | 384 |
container_title | IEEE transactions on automatic control |
container_volume | 15 |
creator | Dabke, K. |
description | A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required. |
doi_str_mv | 10.1109/TAC.1970.1099483 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_1970_1099483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1099483</ieee_id><sourcerecordid>29024866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EEqWwI7FkYkvxI3ZiMVUVL6kSA2W2_LiGQNoE2xHi3-MqHdhY7tWne747HIQuCV4QguXNZrlaEFnnhKWsGnaEZoTzpqScsmM0w5g0paSNOEVnMX7kKKqKzNDty2j6IbVb3RVduwMdigBvY6dTH2Lx3ab3ot3Zfjt0kKCISefpAZzR9vMcnXjdRbg47Dl6vb_brB7L9fPD02q5Li2jLJU1aGKopoZRZ520zntBOEhHG2mZqz333Fpfaa8N0xLT2jDDwTvKnaDCsDm6nv4Oof8aISa1baOFrtM76MeoaO5UjRD_g43AFa5oBvEE2tDHGMCrIWQF4UcRrPY6Vdap9jrVQWeuXE2VFgD-4NP1FzVScks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28604042</pqid></control><display><type>article</type><title>Suboptimal linear regulators with incomplete state feedback</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dabke, K.</creator><creatorcontrib>Dabke, K.</creatorcontrib><description>A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1970.1099483</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Covariance matrix ; Design methodology ; Equations ; Optimal control ; Polynomials ; Regulators ; State feedback ; Statistics ; Upper bound</subject><ispartof>IEEE transactions on automatic control, 1970-06, Vol.15 (3), p.384-386</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</citedby><cites>FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1099483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dabke, K.</creatorcontrib><title>Suboptimal linear regulators with incomplete state feedback</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required.</description><subject>Cost function</subject><subject>Covariance matrix</subject><subject>Design methodology</subject><subject>Equations</subject><subject>Optimal control</subject><subject>Polynomials</subject><subject>Regulators</subject><subject>State feedback</subject><subject>Statistics</subject><subject>Upper bound</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EEqWwI7FkYkvxI3ZiMVUVL6kSA2W2_LiGQNoE2xHi3-MqHdhY7tWne747HIQuCV4QguXNZrlaEFnnhKWsGnaEZoTzpqScsmM0w5g0paSNOEVnMX7kKKqKzNDty2j6IbVb3RVduwMdigBvY6dTH2Lx3ab3ot3Zfjt0kKCISefpAZzR9vMcnXjdRbg47Dl6vb_brB7L9fPD02q5Li2jLJU1aGKopoZRZ520zntBOEhHG2mZqz333Fpfaa8N0xLT2jDDwTvKnaDCsDm6nv4Oof8aISa1baOFrtM76MeoaO5UjRD_g43AFa5oBvEE2tDHGMCrIWQF4UcRrPY6Vdap9jrVQWeuXE2VFgD-4NP1FzVScks</recordid><startdate>19700601</startdate><enddate>19700601</enddate><creator>Dabke, K.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19700601</creationdate><title>Suboptimal linear regulators with incomplete state feedback</title><author>Dabke, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>Cost function</topic><topic>Covariance matrix</topic><topic>Design methodology</topic><topic>Equations</topic><topic>Optimal control</topic><topic>Polynomials</topic><topic>Regulators</topic><topic>State feedback</topic><topic>Statistics</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabke, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabke, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suboptimal linear regulators with incomplete state feedback</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1970-06-01</date><risdate>1970</risdate><volume>15</volume><issue>3</issue><spage>384</spage><epage>386</epage><pages>384-386</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1970.1099483</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1970-06, Vol.15 (3), p.384-386 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_1970_1099483 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cost function Covariance matrix Design methodology Equations Optimal control Polynomials Regulators State feedback Statistics Upper bound |
title | Suboptimal linear regulators with incomplete state feedback |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suboptimal%20linear%20regulators%20with%20incomplete%20state%20feedback&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Dabke,%20K.&rft.date=1970-06-01&rft.volume=15&rft.issue=3&rft.spage=384&rft.epage=386&rft.pages=384-386&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1970.1099483&rft_dat=%3Cproquest_cross%3E29024866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28604042&rft_id=info:pmid/&rft_ieee_id=1099483&rfr_iscdi=true |