Loading…

Suboptimal linear regulators with incomplete state feedback

A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1970-06, Vol.15 (3), p.384-386
Main Author: Dabke, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3
cites cdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3
container_end_page 386
container_issue 3
container_start_page 384
container_title IEEE transactions on automatic control
container_volume 15
creator Dabke, K.
description A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required.
doi_str_mv 10.1109/TAC.1970.1099483
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_1970_1099483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1099483</ieee_id><sourcerecordid>29024866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EEqWwI7FkYkvxI3ZiMVUVL6kSA2W2_LiGQNoE2xHi3-MqHdhY7tWne747HIQuCV4QguXNZrlaEFnnhKWsGnaEZoTzpqScsmM0w5g0paSNOEVnMX7kKKqKzNDty2j6IbVb3RVduwMdigBvY6dTH2Lx3ab3ot3Zfjt0kKCISefpAZzR9vMcnXjdRbg47Dl6vb_brB7L9fPD02q5Li2jLJU1aGKopoZRZ520zntBOEhHG2mZqz333Fpfaa8N0xLT2jDDwTvKnaDCsDm6nv4Oof8aISa1baOFrtM76MeoaO5UjRD_g43AFa5oBvEE2tDHGMCrIWQF4UcRrPY6Vdap9jrVQWeuXE2VFgD-4NP1FzVScks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28604042</pqid></control><display><type>article</type><title>Suboptimal linear regulators with incomplete state feedback</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dabke, K.</creator><creatorcontrib>Dabke, K.</creatorcontrib><description>A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1970.1099483</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Covariance matrix ; Design methodology ; Equations ; Optimal control ; Polynomials ; Regulators ; State feedback ; Statistics ; Upper bound</subject><ispartof>IEEE transactions on automatic control, 1970-06, Vol.15 (3), p.384-386</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</citedby><cites>FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1099483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dabke, K.</creatorcontrib><title>Suboptimal linear regulators with incomplete state feedback</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required.</description><subject>Cost function</subject><subject>Covariance matrix</subject><subject>Design methodology</subject><subject>Equations</subject><subject>Optimal control</subject><subject>Polynomials</subject><subject>Regulators</subject><subject>State feedback</subject><subject>Statistics</subject><subject>Upper bound</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EEqWwI7FkYkvxI3ZiMVUVL6kSA2W2_LiGQNoE2xHi3-MqHdhY7tWne747HIQuCV4QguXNZrlaEFnnhKWsGnaEZoTzpqScsmM0w5g0paSNOEVnMX7kKKqKzNDty2j6IbVb3RVduwMdigBvY6dTH2Lx3ab3ot3Zfjt0kKCISefpAZzR9vMcnXjdRbg47Dl6vb_brB7L9fPD02q5Li2jLJU1aGKopoZRZ520zntBOEhHG2mZqz333Fpfaa8N0xLT2jDDwTvKnaDCsDm6nv4Oof8aISa1baOFrtM76MeoaO5UjRD_g43AFa5oBvEE2tDHGMCrIWQF4UcRrPY6Vdap9jrVQWeuXE2VFgD-4NP1FzVScks</recordid><startdate>19700601</startdate><enddate>19700601</enddate><creator>Dabke, K.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19700601</creationdate><title>Suboptimal linear regulators with incomplete state feedback</title><author>Dabke, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>Cost function</topic><topic>Covariance matrix</topic><topic>Design methodology</topic><topic>Equations</topic><topic>Optimal control</topic><topic>Polynomials</topic><topic>Regulators</topic><topic>State feedback</topic><topic>Statistics</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabke, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabke, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suboptimal linear regulators with incomplete state feedback</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1970-06-01</date><risdate>1970</risdate><volume>15</volume><issue>3</issue><spage>384</spage><epage>386</epage><pages>384-386</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A method of designing linear regulators with incomplete state feedback has been suggested by Rekasius [1]. Ramar and Ramaswami [2] have pointed out the difficulties encountered in applying this method. This correspondence presents, briefly, an alternative approach to this problem in two cases of a) unknown initial state and b) known initial state statistics, viz., mean and covariance matrix. Solution for the control law utilizing only the available states is obtained by minimizing an upper bound on the ratio of the suboptimal to optimal cost in case a). In case b) the expected value of the suboptimal cost is minimized. It is assumed that the available states are sufficient to make the feedback system stable. The solution is in the form of necessary conditions and results in a set of simultaneous polynomial equations, but the solution to the optimal control problem is not required.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1970.1099483</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1970-06, Vol.15 (3), p.384-386
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_1970_1099483
source IEEE Electronic Library (IEL) Journals
subjects Cost function
Covariance matrix
Design methodology
Equations
Optimal control
Polynomials
Regulators
State feedback
Statistics
Upper bound
title Suboptimal linear regulators with incomplete state feedback
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suboptimal%20linear%20regulators%20with%20incomplete%20state%20feedback&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Dabke,%20K.&rft.date=1970-06-01&rft.volume=15&rft.issue=3&rft.spage=384&rft.epage=386&rft.pages=384-386&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1970.1099483&rft_dat=%3Cproquest_cross%3E29024866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-7ea1b2a2b32dcd9cdff615e9d289c3d7f5f5ccf4afab3a9027b3b5efd25d626b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28604042&rft_id=info:pmid/&rft_ieee_id=1099483&rfr_iscdi=true