Loading…

Optimal Gaits for Mechanical Rectifier Systems

The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2011-01, Vol.56 (1), p.59-71
Main Authors: Blair, J, Iwasaki, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3
cites cdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3
container_end_page 71
container_issue 1
container_start_page 59
container_title IEEE transactions on automatic control
container_volume 56
creator Blair, J
Iwasaki, T
description The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal.
doi_str_mv 10.1109/TAC.2010.2051074
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2010_2051074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5471119</ieee_id><sourcerecordid>2246772621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcsiiKetmWTzdSxFq1ApaD2HNDuLKe1uTbaH_ntTWjx4GmbyvMPkIeQW6AiAmqfFeDJiNHeMCqCqOiMDEEKXTDB-TgaUgi4N0_KSXKW0yq2sKhiQ0Xzbh41bF1MX-lQ0XSze0X-7Nvg8_EDfhyZgLD73qcdNuiYXjVsnvDnVIfl6eV5MXsvZfPo2Gc9Kz43pSwN17SjzQqDWCpiUyyWjNedL4Eo7p3itlJecK8xAhY6JDGhQDJDXTcOH5PG4dxu7nx2m3m5C8rheuxa7XbJagqgAjMnk_T9y1e1im4-zupKGScaqDNEj5GOXUsTGbmP-ddxboPagz2Z99qDPnvTlyMNpr0tZRRNd60P6yzGuc8zIzN0duYCIf8-iUpDP47_oo3Wx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846926224</pqid></control><display><type>article</type><title>Optimal Gaits for Mechanical Rectifier Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Blair, J ; Iwasaki, T</creator><creatorcontrib>Blair, J ; Iwasaki, T</creatorcontrib><description>The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2051074</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace engineering ; Animals ; Applied sciences ; Biological control systems ; Computer science; control theory; systems ; Control theory. Systems ; Cost function ; Dynamics ; Exact sciences and technology ; Gait ; Legged locomotion ; Locomotion ; Mathematical analysis ; Mathematical models ; motion-planning ; Optimal control ; Optimization ; Optimization methods ; Rectifiers ; Robotics ; Robots ; Searching ; Shape ; Studies ; Vehicle dynamics</subject><ispartof>IEEE transactions on automatic control, 2011-01, Vol.56 (1), p.59-71</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</citedby><cites>FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5471119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23810996$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blair, J</creatorcontrib><creatorcontrib>Iwasaki, T</creatorcontrib><title>Optimal Gaits for Mechanical Rectifier Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal.</description><subject>Aerospace engineering</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biological control systems</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Gait</subject><subject>Legged locomotion</subject><subject>Locomotion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>motion-planning</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Rectifiers</subject><subject>Robotics</subject><subject>Robots</subject><subject>Searching</subject><subject>Shape</subject><subject>Studies</subject><subject>Vehicle dynamics</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcsiiKetmWTzdSxFq1ApaD2HNDuLKe1uTbaH_ntTWjx4GmbyvMPkIeQW6AiAmqfFeDJiNHeMCqCqOiMDEEKXTDB-TgaUgi4N0_KSXKW0yq2sKhiQ0Xzbh41bF1MX-lQ0XSze0X-7Nvg8_EDfhyZgLD73qcdNuiYXjVsnvDnVIfl6eV5MXsvZfPo2Gc9Kz43pSwN17SjzQqDWCpiUyyWjNedL4Eo7p3itlJecK8xAhY6JDGhQDJDXTcOH5PG4dxu7nx2m3m5C8rheuxa7XbJagqgAjMnk_T9y1e1im4-zupKGScaqDNEj5GOXUsTGbmP-ddxboPagz2Z99qDPnvTlyMNpr0tZRRNd60P6yzGuc8zIzN0duYCIf8-iUpDP47_oo3Wx</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Blair, J</creator><creator>Iwasaki, T</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201101</creationdate><title>Optimal Gaits for Mechanical Rectifier Systems</title><author>Blair, J ; Iwasaki, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerospace engineering</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biological control systems</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Gait</topic><topic>Legged locomotion</topic><topic>Locomotion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>motion-planning</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Rectifiers</topic><topic>Robotics</topic><topic>Robots</topic><topic>Searching</topic><topic>Shape</topic><topic>Studies</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blair, J</creatorcontrib><creatorcontrib>Iwasaki, T</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blair, J</au><au>Iwasaki, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Gaits for Mechanical Rectifier Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-01</date><risdate>2011</risdate><volume>56</volume><issue>1</issue><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2051074</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2011-01, Vol.56 (1), p.59-71
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2010_2051074
source IEEE Electronic Library (IEL) Journals
subjects Aerospace engineering
Animals
Applied sciences
Biological control systems
Computer science
control theory
systems
Control theory. Systems
Cost function
Dynamics
Exact sciences and technology
Gait
Legged locomotion
Locomotion
Mathematical analysis
Mathematical models
motion-planning
Optimal control
Optimization
Optimization methods
Rectifiers
Robotics
Robots
Searching
Shape
Studies
Vehicle dynamics
title Optimal Gaits for Mechanical Rectifier Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Gaits%20for%20Mechanical%20Rectifier%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Blair,%20J&rft.date=2011-01&rft.volume=56&rft.issue=1&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2051074&rft_dat=%3Cproquest_cross%3E2246772621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=846926224&rft_id=info:pmid/&rft_ieee_id=5471119&rfr_iscdi=true