Loading…
Optimal Gaits for Mechanical Rectifier Systems
The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust...
Saved in:
Published in: | IEEE transactions on automatic control 2011-01, Vol.56 (1), p.59-71 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3 |
container_end_page | 71 |
container_issue | 1 |
container_start_page | 59 |
container_title | IEEE transactions on automatic control |
container_volume | 56 |
creator | Blair, J Iwasaki, T |
description | The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal. |
doi_str_mv | 10.1109/TAC.2010.2051074 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2010_2051074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5471119</ieee_id><sourcerecordid>2246772621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcsiiKetmWTzdSxFq1ApaD2HNDuLKe1uTbaH_ntTWjx4GmbyvMPkIeQW6AiAmqfFeDJiNHeMCqCqOiMDEEKXTDB-TgaUgi4N0_KSXKW0yq2sKhiQ0Xzbh41bF1MX-lQ0XSze0X-7Nvg8_EDfhyZgLD73qcdNuiYXjVsnvDnVIfl6eV5MXsvZfPo2Gc9Kz43pSwN17SjzQqDWCpiUyyWjNedL4Eo7p3itlJecK8xAhY6JDGhQDJDXTcOH5PG4dxu7nx2m3m5C8rheuxa7XbJagqgAjMnk_T9y1e1im4-zupKGScaqDNEj5GOXUsTGbmP-ddxboPagz2Z99qDPnvTlyMNpr0tZRRNd60P6yzGuc8zIzN0duYCIf8-iUpDP47_oo3Wx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846926224</pqid></control><display><type>article</type><title>Optimal Gaits for Mechanical Rectifier Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Blair, J ; Iwasaki, T</creator><creatorcontrib>Blair, J ; Iwasaki, T</creatorcontrib><description>The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2051074</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace engineering ; Animals ; Applied sciences ; Biological control systems ; Computer science; control theory; systems ; Control theory. Systems ; Cost function ; Dynamics ; Exact sciences and technology ; Gait ; Legged locomotion ; Locomotion ; Mathematical analysis ; Mathematical models ; motion-planning ; Optimal control ; Optimization ; Optimization methods ; Rectifiers ; Robotics ; Robots ; Searching ; Shape ; Studies ; Vehicle dynamics</subject><ispartof>IEEE transactions on automatic control, 2011-01, Vol.56 (1), p.59-71</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</citedby><cites>FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5471119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23810996$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Blair, J</creatorcontrib><creatorcontrib>Iwasaki, T</creatorcontrib><title>Optimal Gaits for Mechanical Rectifier Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal.</description><subject>Aerospace engineering</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biological control systems</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Gait</subject><subject>Legged locomotion</subject><subject>Locomotion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>motion-planning</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Rectifiers</subject><subject>Robotics</subject><subject>Robots</subject><subject>Searching</subject><subject>Shape</subject><subject>Studies</subject><subject>Vehicle dynamics</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKt3wcsiiKetmWTzdSxFq1ApaD2HNDuLKe1uTbaH_ntTWjx4GmbyvMPkIeQW6AiAmqfFeDJiNHeMCqCqOiMDEEKXTDB-TgaUgi4N0_KSXKW0yq2sKhiQ0Xzbh41bF1MX-lQ0XSze0X-7Nvg8_EDfhyZgLD73qcdNuiYXjVsnvDnVIfl6eV5MXsvZfPo2Gc9Kz43pSwN17SjzQqDWCpiUyyWjNedL4Eo7p3itlJecK8xAhY6JDGhQDJDXTcOH5PG4dxu7nx2m3m5C8rheuxa7XbJagqgAjMnk_T9y1e1im4-zupKGScaqDNEj5GOXUsTGbmP-ddxboPagz2Z99qDPnvTlyMNpr0tZRRNd60P6yzGuc8zIzN0duYCIf8-iUpDP47_oo3Wx</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Blair, J</creator><creator>Iwasaki, T</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201101</creationdate><title>Optimal Gaits for Mechanical Rectifier Systems</title><author>Blair, J ; Iwasaki, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerospace engineering</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biological control systems</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Gait</topic><topic>Legged locomotion</topic><topic>Locomotion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>motion-planning</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Rectifiers</topic><topic>Robotics</topic><topic>Robots</topic><topic>Searching</topic><topic>Shape</topic><topic>Studies</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blair, J</creatorcontrib><creatorcontrib>Iwasaki, T</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blair, J</au><au>Iwasaki, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Gaits for Mechanical Rectifier Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-01</date><risdate>2011</risdate><volume>56</volume><issue>1</issue><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The essential mechanism underlying animal locomotion can be viewed as mechanical rectification that converts periodic body movements to thrust force through interactions with the environment. This paper defines a general class of mechanical rectifiers as multi-body systems equipped with such thrust generation mechanisms. A simple model is developed from the Euler-Lagrange equation by assuming small body oscillations around a given nominal posture. The model reveals that the rectifying dynamics can be captured by a bilinear, but not linear, term of body shape variables. An optimal gait problem is formulated for the bilinear rectifier model as a minimization of a quadratic cost function over the set of periodic functions subject to a constraint on the average locomotion velocity. We prove that a globally optimal solution is given by a harmonic gait that can be found by generalized eigenvalue computation with a line search over cycle frequencies. We provide case studies of a chain of links for which snake-like undulations and jellyfish-like flapping gaits are found to be optimal.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2051074</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2011-01, Vol.56 (1), p.59-71 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2010_2051074 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aerospace engineering Animals Applied sciences Biological control systems Computer science control theory systems Control theory. Systems Cost function Dynamics Exact sciences and technology Gait Legged locomotion Locomotion Mathematical analysis Mathematical models motion-planning Optimal control Optimization Optimization methods Rectifiers Robotics Robots Searching Shape Studies Vehicle dynamics |
title | Optimal Gaits for Mechanical Rectifier Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Gaits%20for%20Mechanical%20Rectifier%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Blair,%20J&rft.date=2011-01&rft.volume=56&rft.issue=1&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2051074&rft_dat=%3Cproquest_cross%3E2246772621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-91dda02c55e8871266bb20d33b1378aa73d77c6337ee884ea25bb281721e3dff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=846926224&rft_id=info:pmid/&rft_ieee_id=5471119&rfr_iscdi=true |