Loading…
Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form
This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformatio...
Saved in:
Published in: | IEEE transactions on automatic control 2015-01, Vol.60 (1), p.233-239 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753 |
container_end_page | 239 |
container_issue | 1 |
container_start_page | 233 |
container_title | IEEE transactions on automatic control |
container_volume | 60 |
creator | Mesbahi, Afshin Haeri, Mohammad |
description | This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results. |
doi_str_mv | 10.1109/TAC.2014.2326292 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2014_2326292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819395</ieee_id><sourcerecordid>3539356381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</originalsourceid><addsrcrecordid>eNpdkE1PAjEQhhujiYjeTbw08eJlsZ-72yOCqAmEgxiPm-4yQHG3xXY3kX9vCcSDp5lJnndm8iB0S8mAUqIeF8PRgBEqBoyzlCl2hnpUyjxhkvFz1COE5olieXqJrkLYxjEVgvbQeuTs0rTG2YCdxWOoXLNzwdg1nhoL2uP3fWihCfjTtBs8cx7wYqMtnlvAM91684Nbh59qV33hhTfarrs6ppzHY6PXzuoaT5xvrtHFStcBbk61jz4mz4vRazKdv7yNhtOk4ky0CZRMgljGnmUkIyWU8W-qJVWl5FQxJaigwKu8rICoVVmyLGd8JcplJkmeSd5HD8e9O---Owht0ZhQQV1rC64LBU0l5UpmikT0_h-6dZ2PDx8oQTKVc5JFihypyrsQPKyKnTeN9vuCkuJgvojmi4P54mQ-Ru6OEQMAf3iaUxUv81_ORX1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640798307</pqid></control><display><type>article</type><title>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</title><source>IEEE Xplore (Online service)</source><creator>Mesbahi, Afshin ; Haeri, Mohammad</creator><creatorcontrib>Mesbahi, Afshin ; Haeri, Mohammad</creatorcontrib><description>This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2014.2326292</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Blocking ; Decomposition ; Eigenvalues and eigenfunctions ; Equations ; Linear systems ; Linear transformations ; Mathematical models ; Matrices ; Representations ; Scalars ; Stability analysis ; Sufficient conditions ; Transforms</subject><ispartof>IEEE transactions on automatic control, 2015-01, Vol.60 (1), p.233-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</citedby><cites>FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</cites><orcidid>0000-0001-8509-4525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,54778</link.rule.ids></links><search><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Haeri, Mohammad</creatorcontrib><title>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results.</description><subject>Automatic control</subject><subject>Blocking</subject><subject>Decomposition</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Linear systems</subject><subject>Linear transformations</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Representations</subject><subject>Scalars</subject><subject>Stability analysis</subject><subject>Sufficient conditions</subject><subject>Transforms</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PAjEQhhujiYjeTbw08eJlsZ-72yOCqAmEgxiPm-4yQHG3xXY3kX9vCcSDp5lJnndm8iB0S8mAUqIeF8PRgBEqBoyzlCl2hnpUyjxhkvFz1COE5olieXqJrkLYxjEVgvbQeuTs0rTG2YCdxWOoXLNzwdg1nhoL2uP3fWihCfjTtBs8cx7wYqMtnlvAM91684Nbh59qV33hhTfarrs6ppzHY6PXzuoaT5xvrtHFStcBbk61jz4mz4vRazKdv7yNhtOk4ky0CZRMgljGnmUkIyWU8W-qJVWl5FQxJaigwKu8rICoVVmyLGd8JcplJkmeSd5HD8e9O---Owht0ZhQQV1rC64LBU0l5UpmikT0_h-6dZ2PDx8oQTKVc5JFihypyrsQPKyKnTeN9vuCkuJgvojmi4P54mQ-Ru6OEQMAf3iaUxUv81_ORX1O</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Mesbahi, Afshin</creator><creator>Haeri, Mohammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0001-8509-4525</orcidid></search><sort><creationdate>201501</creationdate><title>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</title><author>Mesbahi, Afshin ; Haeri, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automatic control</topic><topic>Blocking</topic><topic>Decomposition</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Linear systems</topic><topic>Linear transformations</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Representations</topic><topic>Scalars</topic><topic>Stability analysis</topic><topic>Sufficient conditions</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Haeri, Mohammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesbahi, Afshin</au><au>Haeri, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2015-01</date><risdate>2015</risdate><volume>60</volume><issue>1</issue><spage>233</spage><epage>239</epage><pages>233-239</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2014.2326292</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8509-4525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2015-01, Vol.60 (1), p.233-239 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2014_2326292 |
source | IEEE Xplore (Online service) |
subjects | Automatic control Blocking Decomposition Eigenvalues and eigenfunctions Equations Linear systems Linear transformations Mathematical models Matrices Representations Scalars Stability analysis Sufficient conditions Transforms |
title | Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditions%20on%20Decomposing%20Linear%20Systems%20With%20More%20Than%20One%20Matrix%20to%20Block%20Triangular%20or%20Diagonal%20Form&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Mesbahi,%20Afshin&rft.date=2015-01&rft.volume=60&rft.issue=1&rft.spage=233&rft.epage=239&rft.pages=233-239&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2014.2326292&rft_dat=%3Cproquest_cross%3E3539356381%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1640798307&rft_id=info:pmid/&rft_ieee_id=6819395&rfr_iscdi=true |