Loading…

Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form

This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2015-01, Vol.60 (1), p.233-239
Main Authors: Mesbahi, Afshin, Haeri, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753
cites cdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753
container_end_page 239
container_issue 1
container_start_page 233
container_title IEEE transactions on automatic control
container_volume 60
creator Mesbahi, Afshin
Haeri, Mohammad
description This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results.
doi_str_mv 10.1109/TAC.2014.2326292
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2014_2326292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6819395</ieee_id><sourcerecordid>3539356381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</originalsourceid><addsrcrecordid>eNpdkE1PAjEQhhujiYjeTbw08eJlsZ-72yOCqAmEgxiPm-4yQHG3xXY3kX9vCcSDp5lJnndm8iB0S8mAUqIeF8PRgBEqBoyzlCl2hnpUyjxhkvFz1COE5olieXqJrkLYxjEVgvbQeuTs0rTG2YCdxWOoXLNzwdg1nhoL2uP3fWihCfjTtBs8cx7wYqMtnlvAM91684Nbh59qV33hhTfarrs6ppzHY6PXzuoaT5xvrtHFStcBbk61jz4mz4vRazKdv7yNhtOk4ky0CZRMgljGnmUkIyWU8W-qJVWl5FQxJaigwKu8rICoVVmyLGd8JcplJkmeSd5HD8e9O---Owht0ZhQQV1rC64LBU0l5UpmikT0_h-6dZ2PDx8oQTKVc5JFihypyrsQPKyKnTeN9vuCkuJgvojmi4P54mQ-Ru6OEQMAf3iaUxUv81_ORX1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640798307</pqid></control><display><type>article</type><title>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</title><source>IEEE Xplore (Online service)</source><creator>Mesbahi, Afshin ; Haeri, Mohammad</creator><creatorcontrib>Mesbahi, Afshin ; Haeri, Mohammad</creatorcontrib><description>This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2014.2326292</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Blocking ; Decomposition ; Eigenvalues and eigenfunctions ; Equations ; Linear systems ; Linear transformations ; Mathematical models ; Matrices ; Representations ; Scalars ; Stability analysis ; Sufficient conditions ; Transforms</subject><ispartof>IEEE transactions on automatic control, 2015-01, Vol.60 (1), p.233-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</citedby><cites>FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</cites><orcidid>0000-0001-8509-4525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6819395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,54778</link.rule.ids></links><search><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Haeri, Mohammad</creatorcontrib><title>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results.</description><subject>Automatic control</subject><subject>Blocking</subject><subject>Decomposition</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Linear systems</subject><subject>Linear transformations</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Representations</subject><subject>Scalars</subject><subject>Stability analysis</subject><subject>Sufficient conditions</subject><subject>Transforms</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PAjEQhhujiYjeTbw08eJlsZ-72yOCqAmEgxiPm-4yQHG3xXY3kX9vCcSDp5lJnndm8iB0S8mAUqIeF8PRgBEqBoyzlCl2hnpUyjxhkvFz1COE5olieXqJrkLYxjEVgvbQeuTs0rTG2YCdxWOoXLNzwdg1nhoL2uP3fWihCfjTtBs8cx7wYqMtnlvAM91684Nbh59qV33hhTfarrs6ppzHY6PXzuoaT5xvrtHFStcBbk61jz4mz4vRazKdv7yNhtOk4ky0CZRMgljGnmUkIyWU8W-qJVWl5FQxJaigwKu8rICoVVmyLGd8JcplJkmeSd5HD8e9O---Owht0ZhQQV1rC64LBU0l5UpmikT0_h-6dZ2PDx8oQTKVc5JFihypyrsQPKyKnTeN9vuCkuJgvojmi4P54mQ-Ru6OEQMAf3iaUxUv81_ORX1O</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Mesbahi, Afshin</creator><creator>Haeri, Mohammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0001-8509-4525</orcidid></search><sort><creationdate>201501</creationdate><title>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</title><author>Mesbahi, Afshin ; Haeri, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automatic control</topic><topic>Blocking</topic><topic>Decomposition</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Linear systems</topic><topic>Linear transformations</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Representations</topic><topic>Scalars</topic><topic>Stability analysis</topic><topic>Sufficient conditions</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesbahi, Afshin</creatorcontrib><creatorcontrib>Haeri, Mohammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesbahi, Afshin</au><au>Haeri, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2015-01</date><risdate>2015</risdate><volume>60</volume><issue>1</issue><spage>233</spage><epage>239</epage><pages>233-239</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This technical note provides necessary and sufficient conditions to determine that a linear system with more than one matrix in its state-space representation can be decomposed into cascade or separate sub-systems. In order to perform such decomposition, one needs to determine a linear transformation matrix. Furthermore, the given conditions are adapted to a simple but effective condition to derive all possible scalar sub-systems for a given linear system. Numerical examples are provided to demonstrate the applicability of the presented results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2014.2326292</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8509-4525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2015-01, Vol.60 (1), p.233-239
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2014_2326292
source IEEE Xplore (Online service)
subjects Automatic control
Blocking
Decomposition
Eigenvalues and eigenfunctions
Equations
Linear systems
Linear transformations
Mathematical models
Matrices
Representations
Scalars
Stability analysis
Sufficient conditions
Transforms
title Conditions on Decomposing Linear Systems With More Than One Matrix to Block Triangular or Diagonal Form
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditions%20on%20Decomposing%20Linear%20Systems%20With%20More%20Than%20One%20Matrix%20to%20Block%20Triangular%20or%20Diagonal%20Form&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Mesbahi,%20Afshin&rft.date=2015-01&rft.volume=60&rft.issue=1&rft.spage=233&rft.epage=239&rft.pages=233-239&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2014.2326292&rft_dat=%3Cproquest_cross%3E3539356381%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-eb25e4d32427070beb0181a519b5319294141e3c8bce09fbb27823f4bd7508753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1640798307&rft_id=info:pmid/&rft_ieee_id=6819395&rfr_iscdi=true