Loading…
A Duality Framework for Stochastic Optimal Control of Complex Systems
We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yiel...
Saved in:
Published in: | IEEE transactions on automatic control 2016-10, Vol.61 (10), p.2756-2765 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93 |
container_end_page | 2765 |
container_issue | 10 |
container_start_page | 2756 |
container_title | IEEE transactions on automatic control |
container_volume | 61 |
creator | Malikopoulos, Andreas A. |
description | We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems. |
doi_str_mv | 10.1109/TAC.2015.2504518 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2015_2504518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7345536</ieee_id><sourcerecordid>4223851771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvQ89Z8Z3MstVWh0EPrOaRplm7d3axJiva_N2XF08zA7w3vPQDuMZpgjNTzZjqbEIT5hHDEOC4vwAhzXhaEE3oJRgjhslCkFNfgJsZDPgVjeATmU_hyNE2dTnARTOu-ffiElQ9wnbzdm5hqC1d9qlvTwJnvUvAN9FVe275xP3B9ism18RZcVaaJ7u5vjsHHYr6ZvRXL1ev7bLosLBUoFdRRuZMSOSFlqbbYii0z1O0opkxJKpjNUawUlpKqQk5JVBlipWSMC-aMomPwOPz12ZiOtk7O7q3vOmeTxoQwyVCGngaoD_7r6GLSB38MXfalcUmRUliUNFNooGzwMQZX6T7klOGkMdLnRnVuVJ8b1X-NZsnDIKmdc_-4pIxzKugvzzxvXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830991683</pqid></control><display><type>article</type><title>A Duality Framework for Stochastic Optimal Control of Complex Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Malikopoulos, Andreas A.</creator><creatorcontrib>Malikopoulos, Andreas A. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</creatorcontrib><description>We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2015.2504518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Complex Systems ; Government ; HEV optimization ; Markov processes ; MATHEMATICS AND COMPUTING ; Multiobjective Optimization ; Optimal control ; Optimization ; Pareto control policy ; Pareto Efficiency ; Random variables ; Stochastic Optimal Control</subject><ispartof>IEEE transactions on automatic control, 2016-10, Vol.61 (10), p.2756-2765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</citedby><cites>FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7345536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,54779</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1224740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malikopoulos, Andreas A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</creatorcontrib><title>A Duality Framework for Stochastic Optimal Control of Complex Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.</description><subject>Aerospace electronics</subject><subject>Complex Systems</subject><subject>Government</subject><subject>HEV optimization</subject><subject>Markov processes</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Multiobjective Optimization</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Pareto control policy</subject><subject>Pareto Efficiency</subject><subject>Random variables</subject><subject>Stochastic Optimal Control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvQ89Z8Z3MstVWh0EPrOaRplm7d3axJiva_N2XF08zA7w3vPQDuMZpgjNTzZjqbEIT5hHDEOC4vwAhzXhaEE3oJRgjhslCkFNfgJsZDPgVjeATmU_hyNE2dTnARTOu-ffiElQ9wnbzdm5hqC1d9qlvTwJnvUvAN9FVe275xP3B9ism18RZcVaaJ7u5vjsHHYr6ZvRXL1ev7bLosLBUoFdRRuZMSOSFlqbbYii0z1O0opkxJKpjNUawUlpKqQk5JVBlipWSMC-aMomPwOPz12ZiOtk7O7q3vOmeTxoQwyVCGngaoD_7r6GLSB38MXfalcUmRUliUNFNooGzwMQZX6T7klOGkMdLnRnVuVJ8b1X-NZsnDIKmdc_-4pIxzKugvzzxvXg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Malikopoulos, Andreas A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161001</creationdate><title>A Duality Framework for Stochastic Optimal Control of Complex Systems</title><author>Malikopoulos, Andreas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerospace electronics</topic><topic>Complex Systems</topic><topic>Government</topic><topic>HEV optimization</topic><topic>Markov processes</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Multiobjective Optimization</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Pareto control policy</topic><topic>Pareto Efficiency</topic><topic>Random variables</topic><topic>Stochastic Optimal Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malikopoulos, Andreas A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malikopoulos, Andreas A.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Duality Framework for Stochastic Optimal Control of Complex Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>61</volume><issue>10</issue><spage>2756</spage><epage>2765</epage><pages>2756-2765</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2015.2504518</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2016-10, Vol.61 (10), p.2756-2765 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2015_2504518 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aerospace electronics Complex Systems Government HEV optimization Markov processes MATHEMATICS AND COMPUTING Multiobjective Optimization Optimal control Optimization Pareto control policy Pareto Efficiency Random variables Stochastic Optimal Control |
title | A Duality Framework for Stochastic Optimal Control of Complex Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Duality%20Framework%20for%20Stochastic%20Optimal%20Control%20of%20Complex%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Malikopoulos,%20Andreas%20A.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20National%20Transportation%20Research%20Center%20(NTRC)&rft.date=2016-10-01&rft.volume=61&rft.issue=10&rft.spage=2756&rft.epage=2765&rft.pages=2756-2765&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2015.2504518&rft_dat=%3Cproquest_cross%3E4223851771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830991683&rft_id=info:pmid/&rft_ieee_id=7345536&rfr_iscdi=true |