Loading…

A Duality Framework for Stochastic Optimal Control of Complex Systems

We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yiel...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2016-10, Vol.61 (10), p.2756-2765
Main Author: Malikopoulos, Andreas A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93
cites cdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93
container_end_page 2765
container_issue 10
container_start_page 2756
container_title IEEE transactions on automatic control
container_volume 61
creator Malikopoulos, Andreas A.
description We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.
doi_str_mv 10.1109/TAC.2015.2504518
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2015_2504518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7345536</ieee_id><sourcerecordid>4223851771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvQ89Z8Z3MstVWh0EPrOaRplm7d3axJiva_N2XF08zA7w3vPQDuMZpgjNTzZjqbEIT5hHDEOC4vwAhzXhaEE3oJRgjhslCkFNfgJsZDPgVjeATmU_hyNE2dTnARTOu-ffiElQ9wnbzdm5hqC1d9qlvTwJnvUvAN9FVe275xP3B9ism18RZcVaaJ7u5vjsHHYr6ZvRXL1ev7bLosLBUoFdRRuZMSOSFlqbbYii0z1O0opkxJKpjNUawUlpKqQk5JVBlipWSMC-aMomPwOPz12ZiOtk7O7q3vOmeTxoQwyVCGngaoD_7r6GLSB38MXfalcUmRUliUNFNooGzwMQZX6T7klOGkMdLnRnVuVJ8b1X-NZsnDIKmdc_-4pIxzKugvzzxvXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830991683</pqid></control><display><type>article</type><title>A Duality Framework for Stochastic Optimal Control of Complex Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Malikopoulos, Andreas A.</creator><creatorcontrib>Malikopoulos, Andreas A. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</creatorcontrib><description>We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2015.2504518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Complex Systems ; Government ; HEV optimization ; Markov processes ; MATHEMATICS AND COMPUTING ; Multiobjective Optimization ; Optimal control ; Optimization ; Pareto control policy ; Pareto Efficiency ; Random variables ; Stochastic Optimal Control</subject><ispartof>IEEE transactions on automatic control, 2016-10, Vol.61 (10), p.2756-2765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</citedby><cites>FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7345536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,54779</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1224740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malikopoulos, Andreas A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</creatorcontrib><title>A Duality Framework for Stochastic Optimal Control of Complex Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.</description><subject>Aerospace electronics</subject><subject>Complex Systems</subject><subject>Government</subject><subject>HEV optimization</subject><subject>Markov processes</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Multiobjective Optimization</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Pareto control policy</subject><subject>Pareto Efficiency</subject><subject>Random variables</subject><subject>Stochastic Optimal Control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvQ89Z8Z3MstVWh0EPrOaRplm7d3axJiva_N2XF08zA7w3vPQDuMZpgjNTzZjqbEIT5hHDEOC4vwAhzXhaEE3oJRgjhslCkFNfgJsZDPgVjeATmU_hyNE2dTnARTOu-ffiElQ9wnbzdm5hqC1d9qlvTwJnvUvAN9FVe275xP3B9ism18RZcVaaJ7u5vjsHHYr6ZvRXL1ev7bLosLBUoFdRRuZMSOSFlqbbYii0z1O0opkxJKpjNUawUlpKqQk5JVBlipWSMC-aMomPwOPz12ZiOtk7O7q3vOmeTxoQwyVCGngaoD_7r6GLSB38MXfalcUmRUliUNFNooGzwMQZX6T7klOGkMdLnRnVuVJ8b1X-NZsnDIKmdc_-4pIxzKugvzzxvXg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Malikopoulos, Andreas A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161001</creationdate><title>A Duality Framework for Stochastic Optimal Control of Complex Systems</title><author>Malikopoulos, Andreas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerospace electronics</topic><topic>Complex Systems</topic><topic>Government</topic><topic>HEV optimization</topic><topic>Markov processes</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Multiobjective Optimization</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Pareto control policy</topic><topic>Pareto Efficiency</topic><topic>Random variables</topic><topic>Stochastic Optimal Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malikopoulos, Andreas A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malikopoulos, Andreas A.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Duality Framework for Stochastic Optimal Control of Complex Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>61</volume><issue>10</issue><spage>2756</spage><epage>2765</epage><pages>2756-2765</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We address the problem of minimizing the long-run expected average cost of a complex system consisting of interactive subsystems. We formulate a multiobjective optimization problem of the one-stage expected costs of the subsystems and provide a duality framework to prove that the control policy yielding the Pareto optimal solution minimizes the average cost criterion of the system. We provide the conditions of existence and a geometric interpretation of the solution. For practical situations with constraints consistent to those studied here, our results imply that the Pareto control policy may be of value when we seek to derive online the optimal control policy in complex systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2015.2504518</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2016-10, Vol.61 (10), p.2756-2765
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2015_2504518
source IEEE Electronic Library (IEL) Journals
subjects Aerospace electronics
Complex Systems
Government
HEV optimization
Markov processes
MATHEMATICS AND COMPUTING
Multiobjective Optimization
Optimal control
Optimization
Pareto control policy
Pareto Efficiency
Random variables
Stochastic Optimal Control
title A Duality Framework for Stochastic Optimal Control of Complex Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Duality%20Framework%20for%20Stochastic%20Optimal%20Control%20of%20Complex%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Malikopoulos,%20Andreas%20A.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20National%20Transportation%20Research%20Center%20(NTRC)&rft.date=2016-10-01&rft.volume=61&rft.issue=10&rft.spage=2756&rft.epage=2765&rft.pages=2756-2765&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2015.2504518&rft_dat=%3Cproquest_cross%3E4223851771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-3e37d770e67789b1c6b4a3ed313497364c110c76c32ff0e970fa2c7744564ea93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830991683&rft_id=info:pmid/&rft_ieee_id=7345536&rfr_iscdi=true