Loading…
Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms
This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: t...
Saved in:
Published in: | IEEE transactions on automatic control 2018-06, Vol.63 (6), p.1563-1578 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3 |
container_end_page | 1578 |
container_issue | 6 |
container_start_page | 1563 |
container_title | IEEE transactions on automatic control |
container_volume | 63 |
creator | Fangbo Zhang Bertozzi, Andrea L. Elamvazhuthi, Karthik Berman, Spring |
description | This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field. |
doi_str_mv | 10.1109/TAC.2017.2747769 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2017_2747769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8023769</ieee_id><sourcerecordid>2038412321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7-51jDX4UCoqt52Wz2Whqm627qdJ_b0KLp5dhnncGHoSugUwASH63nBYTSkBNqOJKyfwEjUAInVFB2SkaEQI6y6mW5-gipVU_Ss5hhGavPtYhbmzrPL4Pu7ZKOLR4sbVdY9e4CD8-2g-PlzZ9JVzu8aIL7tOmrnH4LZRhyMWvjZt0ic5qu07-6phj9P74sCyes_nL06yYzjPHNOkyWlvLHEirdaUkraiqOc81KMlBlqSquSCVr60svWAggAiQDFTlBQgCrmJjdHu4u43he-dTZ1ZhF9v-paGEaQ6UUegpcqBcDClFX5ttbDY27g0QMwgzvTAzCDNHYX3l5lBpvPf_uCaUDds_Vl1lWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038412321</pqid></control><display><type>article</type><title>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fangbo Zhang ; Bertozzi, Andrea L. ; Elamvazhuthi, Karthik ; Berman, Spring</creator><creatorcontrib>Fangbo Zhang ; Bertozzi, Andrea L. ; Elamvazhuthi, Karthik ; Berman, Spring</creatorcontrib><description>This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2747769</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advection ; Advection-diffusion-reaction (ADR) partial differential equation (PDE) ; Analytical models ; Computational modeling ; Computer simulation ; Error detection ; Mathematical model ; Mathematical models ; Optimal control ; Parameters ; Partial differential equations ; Robot sensing systems ; Robot sensors ; Robotics ; Robots ; Spatial distribution ; Stochastic processes ; stochastic systems ; swarm robotics ; Switching ; Velocity distribution</subject><ispartof>IEEE transactions on automatic control, 2018-06, Vol.63 (6), p.1563-1578</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</citedby><cites>FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</cites><orcidid>0000-0003-0849-5178 ; 0000-0003-0396-7391 ; 0000-0001-9239-0509 ; 0000-0002-6233-1003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8023769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Fangbo Zhang</creatorcontrib><creatorcontrib>Bertozzi, Andrea L.</creatorcontrib><creatorcontrib>Elamvazhuthi, Karthik</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><title>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field.</description><subject>Advection</subject><subject>Advection-diffusion-reaction (ADR) partial differential equation (PDE)</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Error detection</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Robot sensing systems</subject><subject>Robot sensors</subject><subject>Robotics</subject><subject>Robots</subject><subject>Spatial distribution</subject><subject>Stochastic processes</subject><subject>stochastic systems</subject><subject>swarm robotics</subject><subject>Switching</subject><subject>Velocity distribution</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7-51jDX4UCoqt52Wz2Whqm627qdJ_b0KLp5dhnncGHoSugUwASH63nBYTSkBNqOJKyfwEjUAInVFB2SkaEQI6y6mW5-gipVU_Ss5hhGavPtYhbmzrPL4Pu7ZKOLR4sbVdY9e4CD8-2g-PlzZ9JVzu8aIL7tOmrnH4LZRhyMWvjZt0ic5qu07-6phj9P74sCyes_nL06yYzjPHNOkyWlvLHEirdaUkraiqOc81KMlBlqSquSCVr60svWAggAiQDFTlBQgCrmJjdHu4u43he-dTZ1ZhF9v-paGEaQ6UUegpcqBcDClFX5ttbDY27g0QMwgzvTAzCDNHYX3l5lBpvPf_uCaUDds_Vl1lWA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Fangbo Zhang</creator><creator>Bertozzi, Andrea L.</creator><creator>Elamvazhuthi, Karthik</creator><creator>Berman, Spring</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0849-5178</orcidid><orcidid>https://orcid.org/0000-0003-0396-7391</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-6233-1003</orcidid></search><sort><creationdate>20180601</creationdate><title>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</title><author>Fangbo Zhang ; Bertozzi, Andrea L. ; Elamvazhuthi, Karthik ; Berman, Spring</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Advection-diffusion-reaction (ADR) partial differential equation (PDE)</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Error detection</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Robot sensing systems</topic><topic>Robot sensors</topic><topic>Robotics</topic><topic>Robots</topic><topic>Spatial distribution</topic><topic>Stochastic processes</topic><topic>stochastic systems</topic><topic>swarm robotics</topic><topic>Switching</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fangbo Zhang</creatorcontrib><creatorcontrib>Bertozzi, Andrea L.</creatorcontrib><creatorcontrib>Elamvazhuthi, Karthik</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fangbo Zhang</au><au>Bertozzi, Andrea L.</au><au>Elamvazhuthi, Karthik</au><au>Berman, Spring</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>63</volume><issue>6</issue><spage>1563</spage><epage>1578</epage><pages>1563-1578</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2017.2747769</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0849-5178</orcidid><orcidid>https://orcid.org/0000-0003-0396-7391</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-6233-1003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2018-06, Vol.63 (6), p.1563-1578 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2017_2747769 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Advection Advection-diffusion-reaction (ADR) partial differential equation (PDE) Analytical models Computational modeling Computer simulation Error detection Mathematical model Mathematical models Optimal control Parameters Partial differential equations Robot sensing systems Robot sensors Robotics Robots Spatial distribution Stochastic processes stochastic systems swarm robotics Switching Velocity distribution |
title | Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Bounds%20on%20Spatial%20Coverage%20Tasks%20by%20Stochastic%20Robotic%20Swarms&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Fangbo%20Zhang&rft.date=2018-06-01&rft.volume=63&rft.issue=6&rft.spage=1563&rft.epage=1578&rft.pages=1563-1578&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2747769&rft_dat=%3Cproquest_cross%3E2038412321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038412321&rft_id=info:pmid/&rft_ieee_id=8023769&rfr_iscdi=true |