Loading…

Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms

This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2018-06, Vol.63 (6), p.1563-1578
Main Authors: Fangbo Zhang, Bertozzi, Andrea L., Elamvazhuthi, Karthik, Berman, Spring
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3
cites cdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3
container_end_page 1578
container_issue 6
container_start_page 1563
container_title IEEE transactions on automatic control
container_volume 63
creator Fangbo Zhang
Bertozzi, Andrea L.
Elamvazhuthi, Karthik
Berman, Spring
description This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field.
doi_str_mv 10.1109/TAC.2017.2747769
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2017_2747769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8023769</ieee_id><sourcerecordid>2038412321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7-51jDX4UCoqt52Wz2Whqm627qdJ_b0KLp5dhnncGHoSugUwASH63nBYTSkBNqOJKyfwEjUAInVFB2SkaEQI6y6mW5-gipVU_Ss5hhGavPtYhbmzrPL4Pu7ZKOLR4sbVdY9e4CD8-2g-PlzZ9JVzu8aIL7tOmrnH4LZRhyMWvjZt0ic5qu07-6phj9P74sCyes_nL06yYzjPHNOkyWlvLHEirdaUkraiqOc81KMlBlqSquSCVr60svWAggAiQDFTlBQgCrmJjdHu4u43he-dTZ1ZhF9v-paGEaQ6UUegpcqBcDClFX5ttbDY27g0QMwgzvTAzCDNHYX3l5lBpvPf_uCaUDds_Vl1lWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038412321</pqid></control><display><type>article</type><title>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fangbo Zhang ; Bertozzi, Andrea L. ; Elamvazhuthi, Karthik ; Berman, Spring</creator><creatorcontrib>Fangbo Zhang ; Bertozzi, Andrea L. ; Elamvazhuthi, Karthik ; Berman, Spring</creatorcontrib><description>This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2747769</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advection ; Advection-diffusion-reaction (ADR) partial differential equation (PDE) ; Analytical models ; Computational modeling ; Computer simulation ; Error detection ; Mathematical model ; Mathematical models ; Optimal control ; Parameters ; Partial differential equations ; Robot sensing systems ; Robot sensors ; Robotics ; Robots ; Spatial distribution ; Stochastic processes ; stochastic systems ; swarm robotics ; Switching ; Velocity distribution</subject><ispartof>IEEE transactions on automatic control, 2018-06, Vol.63 (6), p.1563-1578</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</citedby><cites>FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</cites><orcidid>0000-0003-0849-5178 ; 0000-0003-0396-7391 ; 0000-0001-9239-0509 ; 0000-0002-6233-1003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8023769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Fangbo Zhang</creatorcontrib><creatorcontrib>Bertozzi, Andrea L.</creatorcontrib><creatorcontrib>Elamvazhuthi, Karthik</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><title>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field.</description><subject>Advection</subject><subject>Advection-diffusion-reaction (ADR) partial differential equation (PDE)</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Error detection</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Robot sensing systems</subject><subject>Robot sensors</subject><subject>Robotics</subject><subject>Robots</subject><subject>Spatial distribution</subject><subject>Stochastic processes</subject><subject>stochastic systems</subject><subject>swarm robotics</subject><subject>Switching</subject><subject>Velocity distribution</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6k7-51jDX4UCoqt52Wz2Whqm627qdJ_b0KLp5dhnncGHoSugUwASH63nBYTSkBNqOJKyfwEjUAInVFB2SkaEQI6y6mW5-gipVU_Ss5hhGavPtYhbmzrPL4Pu7ZKOLR4sbVdY9e4CD8-2g-PlzZ9JVzu8aIL7tOmrnH4LZRhyMWvjZt0ic5qu07-6phj9P74sCyes_nL06yYzjPHNOkyWlvLHEirdaUkraiqOc81KMlBlqSquSCVr60svWAggAiQDFTlBQgCrmJjdHu4u43he-dTZ1ZhF9v-paGEaQ6UUegpcqBcDClFX5ttbDY27g0QMwgzvTAzCDNHYX3l5lBpvPf_uCaUDds_Vl1lWA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Fangbo Zhang</creator><creator>Bertozzi, Andrea L.</creator><creator>Elamvazhuthi, Karthik</creator><creator>Berman, Spring</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0849-5178</orcidid><orcidid>https://orcid.org/0000-0003-0396-7391</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-6233-1003</orcidid></search><sort><creationdate>20180601</creationdate><title>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</title><author>Fangbo Zhang ; Bertozzi, Andrea L. ; Elamvazhuthi, Karthik ; Berman, Spring</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Advection-diffusion-reaction (ADR) partial differential equation (PDE)</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Error detection</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Robot sensing systems</topic><topic>Robot sensors</topic><topic>Robotics</topic><topic>Robots</topic><topic>Spatial distribution</topic><topic>Stochastic processes</topic><topic>stochastic systems</topic><topic>swarm robotics</topic><topic>Switching</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fangbo Zhang</creatorcontrib><creatorcontrib>Bertozzi, Andrea L.</creatorcontrib><creatorcontrib>Elamvazhuthi, Karthik</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fangbo Zhang</au><au>Bertozzi, Andrea L.</au><au>Elamvazhuthi, Karthik</au><au>Berman, Spring</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>63</volume><issue>6</issue><spage>1563</spage><epage>1578</epage><pages>1563-1578</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper presents a novel procedure for computing parameters of a robotic swarm that guarantee coverage performance by the swarm within a specified error from a target spatial distribution. The main contribution of this paper is the analysis of the dependence of this error on two key parameters: the number of robots in the swarm and the robot sensing radius. The robots cannot localize or communicate with one another, and they exhibit stochasticity in their motion and task-switching policies. We model the population dynamics of the swarm as an advection-diffusion-reaction partial differential equation (PDE) with time-dependent advection and reaction terms. We derive rigorous bounds on the discrepancies between the target distribution and the coverage achieved by individual-based and PDE models of the swarm. We use these bounds to select the swarm size that will achieve coverage performance within a given error and the corresponding robot sensing radius that will minimize this error. We also apply the optimal control approach from our prior work in [13] to compute the robots' velocity field and task-switching rates. We validate our procedure through simulations of a scenario, in which a robotic swarm must achieve a specified density of pollination activity over a crop field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2017.2747769</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0849-5178</orcidid><orcidid>https://orcid.org/0000-0003-0396-7391</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-6233-1003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2018-06, Vol.63 (6), p.1563-1578
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2017_2747769
source IEEE Electronic Library (IEL) Journals
subjects Advection
Advection-diffusion-reaction (ADR) partial differential equation (PDE)
Analytical models
Computational modeling
Computer simulation
Error detection
Mathematical model
Mathematical models
Optimal control
Parameters
Partial differential equations
Robot sensing systems
Robot sensors
Robotics
Robots
Spatial distribution
Stochastic processes
stochastic systems
swarm robotics
Switching
Velocity distribution
title Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Bounds%20on%20Spatial%20Coverage%20Tasks%20by%20Stochastic%20Robotic%20Swarms&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Fangbo%20Zhang&rft.date=2018-06-01&rft.volume=63&rft.issue=6&rft.spage=1563&rft.epage=1578&rft.pages=1563-1578&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2747769&rft_dat=%3Cproquest_cross%3E2038412321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-2faa3c16a88d762d27f4498176416b0df450defa6be531510516317de51501cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2038412321&rft_id=info:pmid/&rft_ieee_id=8023769&rfr_iscdi=true