Loading…
Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two
We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This co...
Saved in:
Published in: | IEEE transactions on automatic control 2018-07, Vol.63 (7), p.2264-2271 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543 |
container_end_page | 2271 |
container_issue | 7 |
container_start_page | 2264 |
container_title | IEEE transactions on automatic control |
container_volume | 63 |
creator | Berger, Thomas Reis, Timo |
description | We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design. |
doi_str_mv | 10.1109/TAC.2017.2761020 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2017_2761020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8062785</ieee_id><sourcerecordid>10_1109_TAC_2017_2761020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6kzm93N5ljiJ1QsWvXgIaSbiV3JR9lNlf57U1o8DMO8PO8cHsYuESaIkF4vptlEACYTkWgEAUdshEqZSCgRH7MRAJooFUafsrMQvodTS4kj9nm3aVuqeda1ve9q_u4KfojmnmzXrKkNRd95Xg3z5FrXbBo-XxWB-Os29NQE_uH6FX-huujdD_Eb-vJEfPHbnbOTqqgDXRz2mL3d3S6yh2j2fP-YTWeRFTruI2WtlcYkYFM0SWlTrbSSUpeqXFZLPTCUapNIYWyMYGWJilDKskoh3pHxmMH-r_VdCJ6qfO1dU_htjpDv5OSDnHwnJz_IGSpX-4ojon_cgBaJUfEfYv1frA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Berger, Thomas ; Reis, Timo</creator><creatorcontrib>Berger, Thomas ; Reis, Timo</creatorcontrib><description>We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2761020</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backstepping ; Closed loop systems ; Differential equations ; Funnel control ; funnel precompensator ; linear systems ; minimum phase ; Observers ; relative degree ; Trajectory ; Transient analysis</subject><ispartof>IEEE transactions on automatic control, 2018-07, Vol.63 (7), p.2264-2271</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</citedby><cites>FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</cites><orcidid>0000-0003-3987-0831 ; 0000-0003-0721-8494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8062785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Berger, Thomas</creatorcontrib><creatorcontrib>Reis, Timo</creatorcontrib><title>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.</description><subject>Backstepping</subject><subject>Closed loop systems</subject><subject>Differential equations</subject><subject>Funnel control</subject><subject>funnel precompensator</subject><subject>linear systems</subject><subject>minimum phase</subject><subject>Observers</subject><subject>relative degree</subject><subject>Trajectory</subject><subject>Transient analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6kzm93N5ljiJ1QsWvXgIaSbiV3JR9lNlf57U1o8DMO8PO8cHsYuESaIkF4vptlEACYTkWgEAUdshEqZSCgRH7MRAJooFUafsrMQvodTS4kj9nm3aVuqeda1ve9q_u4KfojmnmzXrKkNRd95Xg3z5FrXbBo-XxWB-Os29NQE_uH6FX-huujdD_Eb-vJEfPHbnbOTqqgDXRz2mL3d3S6yh2j2fP-YTWeRFTruI2WtlcYkYFM0SWlTrbSSUpeqXFZLPTCUapNIYWyMYGWJilDKskoh3pHxmMH-r_VdCJ6qfO1dU_htjpDv5OSDnHwnJz_IGSpX-4ojon_cgBaJUfEfYv1frA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Berger, Thomas</creator><creator>Reis, Timo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3987-0831</orcidid><orcidid>https://orcid.org/0000-0003-0721-8494</orcidid></search><sort><creationdate>201807</creationdate><title>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</title><author>Berger, Thomas ; Reis, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Backstepping</topic><topic>Closed loop systems</topic><topic>Differential equations</topic><topic>Funnel control</topic><topic>funnel precompensator</topic><topic>linear systems</topic><topic>minimum phase</topic><topic>Observers</topic><topic>relative degree</topic><topic>Trajectory</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Thomas</creatorcontrib><creatorcontrib>Reis, Timo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Thomas</au><au>Reis, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-07</date><risdate>2018</risdate><volume>63</volume><issue>7</issue><spage>2264</spage><epage>2271</epage><pages>2264-2271</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2761020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3987-0831</orcidid><orcidid>https://orcid.org/0000-0003-0721-8494</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2018-07, Vol.63 (7), p.2264-2271 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2017_2761020 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Backstepping Closed loop systems Differential equations Funnel control funnel precompensator linear systems minimum phase Observers relative degree Trajectory Transient analysis |
title | Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Funnel%20Control%20Via%20Funnel%20Precompensator%20for%20Minimum%20Phase%20Systems%20With%20Relative%20Degree%20Two&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Berger,%20Thomas&rft.date=2018-07&rft.volume=63&rft.issue=7&rft.spage=2264&rft.epage=2271&rft.pages=2264-2271&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2761020&rft_dat=%3Ccrossref_ieee_%3E10_1109_TAC_2017_2761020%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8062785&rfr_iscdi=true |