Loading…

Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two

We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2018-07, Vol.63 (7), p.2264-2271
Main Authors: Berger, Thomas, Reis, Timo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543
cites cdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543
container_end_page 2271
container_issue 7
container_start_page 2264
container_title IEEE transactions on automatic control
container_volume 63
creator Berger, Thomas
Reis, Timo
description We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.
doi_str_mv 10.1109/TAC.2017.2761020
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2017_2761020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8062785</ieee_id><sourcerecordid>10_1109_TAC_2017_2761020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6kzm93N5ljiJ1QsWvXgIaSbiV3JR9lNlf57U1o8DMO8PO8cHsYuESaIkF4vptlEACYTkWgEAUdshEqZSCgRH7MRAJooFUafsrMQvodTS4kj9nm3aVuqeda1ve9q_u4KfojmnmzXrKkNRd95Xg3z5FrXbBo-XxWB-Os29NQE_uH6FX-huujdD_Eb-vJEfPHbnbOTqqgDXRz2mL3d3S6yh2j2fP-YTWeRFTruI2WtlcYkYFM0SWlTrbSSUpeqXFZLPTCUapNIYWyMYGWJilDKskoh3pHxmMH-r_VdCJ6qfO1dU_htjpDv5OSDnHwnJz_IGSpX-4ojon_cgBaJUfEfYv1frA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Berger, Thomas ; Reis, Timo</creator><creatorcontrib>Berger, Thomas ; Reis, Timo</creatorcontrib><description>We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2761020</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backstepping ; Closed loop systems ; Differential equations ; Funnel control ; funnel precompensator ; linear systems ; minimum phase ; Observers ; relative degree ; Trajectory ; Transient analysis</subject><ispartof>IEEE transactions on automatic control, 2018-07, Vol.63 (7), p.2264-2271</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</citedby><cites>FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</cites><orcidid>0000-0003-3987-0831 ; 0000-0003-0721-8494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8062785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Berger, Thomas</creatorcontrib><creatorcontrib>Reis, Timo</creatorcontrib><title>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.</description><subject>Backstepping</subject><subject>Closed loop systems</subject><subject>Differential equations</subject><subject>Funnel control</subject><subject>funnel precompensator</subject><subject>linear systems</subject><subject>minimum phase</subject><subject>Observers</subject><subject>relative degree</subject><subject>Trajectory</subject><subject>Transient analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6kzm93N5ljiJ1QsWvXgIaSbiV3JR9lNlf57U1o8DMO8PO8cHsYuESaIkF4vptlEACYTkWgEAUdshEqZSCgRH7MRAJooFUafsrMQvodTS4kj9nm3aVuqeda1ve9q_u4KfojmnmzXrKkNRd95Xg3z5FrXbBo-XxWB-Os29NQE_uH6FX-huujdD_Eb-vJEfPHbnbOTqqgDXRz2mL3d3S6yh2j2fP-YTWeRFTruI2WtlcYkYFM0SWlTrbSSUpeqXFZLPTCUapNIYWyMYGWJilDKskoh3pHxmMH-r_VdCJ6qfO1dU_htjpDv5OSDnHwnJz_IGSpX-4ojon_cgBaJUfEfYv1frA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Berger, Thomas</creator><creator>Reis, Timo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3987-0831</orcidid><orcidid>https://orcid.org/0000-0003-0721-8494</orcidid></search><sort><creationdate>201807</creationdate><title>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</title><author>Berger, Thomas ; Reis, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Backstepping</topic><topic>Closed loop systems</topic><topic>Differential equations</topic><topic>Funnel control</topic><topic>funnel precompensator</topic><topic>linear systems</topic><topic>minimum phase</topic><topic>Observers</topic><topic>relative degree</topic><topic>Trajectory</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Thomas</creatorcontrib><creatorcontrib>Reis, Timo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Thomas</au><au>Reis, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-07</date><risdate>2018</risdate><volume>63</volume><issue>7</issue><spage>2264</spage><epage>2271</epage><pages>2264-2271</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider tracking control for linear minimum phase single-input, single-output systems with relative degree two. For a class of sufficiently smooth reference signals, we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the recently developed funnel precompensator combined with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2761020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3987-0831</orcidid><orcidid>https://orcid.org/0000-0003-0721-8494</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2018-07, Vol.63 (7), p.2264-2271
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2017_2761020
source IEEE Electronic Library (IEL) Journals
subjects Backstepping
Closed loop systems
Differential equations
Funnel control
funnel precompensator
linear systems
minimum phase
Observers
relative degree
Trajectory
Transient analysis
title Funnel Control Via Funnel Precompensator for Minimum Phase Systems With Relative Degree Two
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Funnel%20Control%20Via%20Funnel%20Precompensator%20for%20Minimum%20Phase%20Systems%20With%20Relative%20Degree%20Two&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Berger,%20Thomas&rft.date=2018-07&rft.volume=63&rft.issue=7&rft.spage=2264&rft.epage=2271&rft.pages=2264-2271&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2761020&rft_dat=%3Ccrossref_ieee_%3E10_1109_TAC_2017_2761020%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-5ccc48870c9187dc96565446d5dbfb6263e9687428c310c4d15e144df90356543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8062785&rfr_iscdi=true