Loading…

Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions

A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the ca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2019-07, Vol.64 (7), p.2653-2664
Main Authors: Cheng, Changming, Bai, Er-wei, Peng, Zhike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3
cites cdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3
container_end_page 2664
container_issue 7
container_start_page 2653
container_title IEEE transactions on automatic control
container_volume 64
creator Cheng, Changming
Bai, Er-wei
Peng, Zhike
description A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple.
doi_str_mv 10.1109/TAC.2018.2867252
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2018_2867252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8447298</ieee_id><sourcerecordid>2248678240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bTd7LIvWQlGw1WvIZieSss3WJBX635vS4mlmmPfeJD-E7imZUErqp_WsmTBC5YTJacVKdoFGtCxlkVt-iUYkr4o6767RTYybPE6FoCMEzeCjiwl8wl86ON32gFfQg0lu8NgOAWv8NvidDnoLKThznHrnQQe8OmTjFrcHvPC_ECJg7TucE9OwD_gDvgPEmGPiLbqyuo9wd65j9PnyvG5ei-X7fNHMloXhnKdCy5ITWdVCENEJC5xSW0lDWGlbyyTvusrUraFGdlCaEvIHKdOSw1QabgzwMXo85e7C8LOHmNQmv8Tnk4oxkcFIJkhWkZPKhCHGAFbtgtvqcFCUqCNMlWGqI0x1hpktDyeLA4B_uRSiYrXkf0Y4cTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248678240</pqid></control><display><type>article</type><title>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cheng, Changming ; Bai, Er-wei ; Peng, Zhike</creator><creatorcontrib>Cheng, Changming ; Bai, Er-wei ; Peng, Zhike</creatorcontrib><description>A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2867252</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Contours ; Data models ; Dimensionality reduction ; Estimation ; Independent variables ; Input variables ; Kernel ; Mathematical models ; Mutual information ; nonlinear identification ; Nonlinear systems ; Nonparametric statistics ; nonparametric systems ; Regression analysis ; Shape ; variable selection</subject><ispartof>IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2653-2664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</citedby><cites>FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</cites><orcidid>0000-0001-5222-4047 ; 0000-0003-0750-436X ; 0000-0002-2095-7075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8447298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Cheng, Changming</creatorcontrib><creatorcontrib>Bai, Er-wei</creatorcontrib><creatorcontrib>Peng, Zhike</creatorcontrib><title>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple.</description><subject>Algorithms</subject><subject>Contours</subject><subject>Data models</subject><subject>Dimensionality reduction</subject><subject>Estimation</subject><subject>Independent variables</subject><subject>Input variables</subject><subject>Kernel</subject><subject>Mathematical models</subject><subject>Mutual information</subject><subject>nonlinear identification</subject><subject>Nonlinear systems</subject><subject>Nonparametric statistics</subject><subject>nonparametric systems</subject><subject>Regression analysis</subject><subject>Shape</subject><subject>variable selection</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bTd7LIvWQlGw1WvIZieSss3WJBX635vS4mlmmPfeJD-E7imZUErqp_WsmTBC5YTJacVKdoFGtCxlkVt-iUYkr4o6767RTYybPE6FoCMEzeCjiwl8wl86ON32gFfQg0lu8NgOAWv8NvidDnoLKThznHrnQQe8OmTjFrcHvPC_ECJg7TucE9OwD_gDvgPEmGPiLbqyuo9wd65j9PnyvG5ei-X7fNHMloXhnKdCy5ITWdVCENEJC5xSW0lDWGlbyyTvusrUraFGdlCaEvIHKdOSw1QabgzwMXo85e7C8LOHmNQmv8Tnk4oxkcFIJkhWkZPKhCHGAFbtgtvqcFCUqCNMlWGqI0x1hpktDyeLA4B_uRSiYrXkf0Y4cTs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Cheng, Changming</creator><creator>Bai, Er-wei</creator><creator>Peng, Zhike</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5222-4047</orcidid><orcidid>https://orcid.org/0000-0003-0750-436X</orcidid><orcidid>https://orcid.org/0000-0002-2095-7075</orcidid></search><sort><creationdate>20190701</creationdate><title>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</title><author>Cheng, Changming ; Bai, Er-wei ; Peng, Zhike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Contours</topic><topic>Data models</topic><topic>Dimensionality reduction</topic><topic>Estimation</topic><topic>Independent variables</topic><topic>Input variables</topic><topic>Kernel</topic><topic>Mathematical models</topic><topic>Mutual information</topic><topic>nonlinear identification</topic><topic>Nonlinear systems</topic><topic>Nonparametric statistics</topic><topic>nonparametric systems</topic><topic>Regression analysis</topic><topic>Shape</topic><topic>variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Changming</creatorcontrib><creatorcontrib>Bai, Er-wei</creatorcontrib><creatorcontrib>Peng, Zhike</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Changming</au><au>Bai, Er-wei</au><au>Peng, Zhike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>64</volume><issue>7</issue><spage>2653</spage><epage>2664</epage><pages>2653-2664</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2867252</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5222-4047</orcidid><orcidid>https://orcid.org/0000-0003-0750-436X</orcidid><orcidid>https://orcid.org/0000-0002-2095-7075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2653-2664
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2018_2867252
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Contours
Data models
Dimensionality reduction
Estimation
Independent variables
Input variables
Kernel
Mathematical models
Mutual information
nonlinear identification
Nonlinear systems
Nonparametric statistics
nonparametric systems
Regression analysis
Shape
variable selection
title Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistent%20Variable%20Selection%20for%20a%20Nonparametric%20Nonlinear%20System%20by%20Inverse%20and%20Contour%20Regressions&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Cheng,%20Changming&rft.date=2019-07-01&rft.volume=64&rft.issue=7&rft.spage=2653&rft.epage=2664&rft.pages=2653-2664&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2867252&rft_dat=%3Cproquest_cross%3E2248678240%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248678240&rft_id=info:pmid/&rft_ieee_id=8447298&rfr_iscdi=true