Loading…
Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions
A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the ca...
Saved in:
Published in: | IEEE transactions on automatic control 2019-07, Vol.64 (7), p.2653-2664 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3 |
container_end_page | 2664 |
container_issue | 7 |
container_start_page | 2653 |
container_title | IEEE transactions on automatic control |
container_volume | 64 |
creator | Cheng, Changming Bai, Er-wei Peng, Zhike |
description | A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple. |
doi_str_mv | 10.1109/TAC.2018.2867252 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2018_2867252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8447298</ieee_id><sourcerecordid>2248678240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bTd7LIvWQlGw1WvIZieSss3WJBX635vS4mlmmPfeJD-E7imZUErqp_WsmTBC5YTJacVKdoFGtCxlkVt-iUYkr4o6767RTYybPE6FoCMEzeCjiwl8wl86ON32gFfQg0lu8NgOAWv8NvidDnoLKThznHrnQQe8OmTjFrcHvPC_ECJg7TucE9OwD_gDvgPEmGPiLbqyuo9wd65j9PnyvG5ei-X7fNHMloXhnKdCy5ITWdVCENEJC5xSW0lDWGlbyyTvusrUraFGdlCaEvIHKdOSw1QabgzwMXo85e7C8LOHmNQmv8Tnk4oxkcFIJkhWkZPKhCHGAFbtgtvqcFCUqCNMlWGqI0x1hpktDyeLA4B_uRSiYrXkf0Y4cTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248678240</pqid></control><display><type>article</type><title>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cheng, Changming ; Bai, Er-wei ; Peng, Zhike</creator><creatorcontrib>Cheng, Changming ; Bai, Er-wei ; Peng, Zhike</creatorcontrib><description>A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2867252</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Contours ; Data models ; Dimensionality reduction ; Estimation ; Independent variables ; Input variables ; Kernel ; Mathematical models ; Mutual information ; nonlinear identification ; Nonlinear systems ; Nonparametric statistics ; nonparametric systems ; Regression analysis ; Shape ; variable selection</subject><ispartof>IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2653-2664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</citedby><cites>FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</cites><orcidid>0000-0001-5222-4047 ; 0000-0003-0750-436X ; 0000-0002-2095-7075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8447298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Cheng, Changming</creatorcontrib><creatorcontrib>Bai, Er-wei</creatorcontrib><creatorcontrib>Peng, Zhike</creatorcontrib><title>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple.</description><subject>Algorithms</subject><subject>Contours</subject><subject>Data models</subject><subject>Dimensionality reduction</subject><subject>Estimation</subject><subject>Independent variables</subject><subject>Input variables</subject><subject>Kernel</subject><subject>Mathematical models</subject><subject>Mutual information</subject><subject>nonlinear identification</subject><subject>Nonlinear systems</subject><subject>Nonparametric statistics</subject><subject>nonparametric systems</subject><subject>Regression analysis</subject><subject>Shape</subject><subject>variable selection</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bTd7LIvWQlGw1WvIZieSss3WJBX635vS4mlmmPfeJD-E7imZUErqp_WsmTBC5YTJacVKdoFGtCxlkVt-iUYkr4o6767RTYybPE6FoCMEzeCjiwl8wl86ON32gFfQg0lu8NgOAWv8NvidDnoLKThznHrnQQe8OmTjFrcHvPC_ECJg7TucE9OwD_gDvgPEmGPiLbqyuo9wd65j9PnyvG5ei-X7fNHMloXhnKdCy5ITWdVCENEJC5xSW0lDWGlbyyTvusrUraFGdlCaEvIHKdOSw1QabgzwMXo85e7C8LOHmNQmv8Tnk4oxkcFIJkhWkZPKhCHGAFbtgtvqcFCUqCNMlWGqI0x1hpktDyeLA4B_uRSiYrXkf0Y4cTs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Cheng, Changming</creator><creator>Bai, Er-wei</creator><creator>Peng, Zhike</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5222-4047</orcidid><orcidid>https://orcid.org/0000-0003-0750-436X</orcidid><orcidid>https://orcid.org/0000-0002-2095-7075</orcidid></search><sort><creationdate>20190701</creationdate><title>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</title><author>Cheng, Changming ; Bai, Er-wei ; Peng, Zhike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Contours</topic><topic>Data models</topic><topic>Dimensionality reduction</topic><topic>Estimation</topic><topic>Independent variables</topic><topic>Input variables</topic><topic>Kernel</topic><topic>Mathematical models</topic><topic>Mutual information</topic><topic>nonlinear identification</topic><topic>Nonlinear systems</topic><topic>Nonparametric statistics</topic><topic>nonparametric systems</topic><topic>Regression analysis</topic><topic>Shape</topic><topic>variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Changming</creatorcontrib><creatorcontrib>Bai, Er-wei</creatorcontrib><creatorcontrib>Peng, Zhike</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Changming</au><au>Bai, Er-wei</au><au>Peng, Zhike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>64</volume><issue>7</issue><spage>2653</spage><epage>2664</epage><pages>2653-2664</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A parsimonious model is always preferred in engineering applications not only because it has a better prediction ability but also because it suffers less from the curse of dimensionality in data-based modeling. One way to achieve a parsimonious model is to identify contributing variables from the candidate variables and then to eliminate noncontributing or redundant variables. However, identifying which variables contribute and which variables do not contribute is not an easy task for a nonparametric nonlinear system. This paper considers variable-selection problems for a nonlinear nonparametric system. Two approaches, inverse and contour variable-selection algorithms, are proposed along with their theoretical analysis and numerical algorithms. Neither approach suffers from the curse of dimensionality, which is usually a problem for traditional variable-selection methods for a nonparametric nonlinear system. Furthermore, no elliptic symmetry nor independent input variables are assumed, so both algorithms enjoy wide applications. Numerical algorithms for both approaches are fairly straightforward and simple.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2867252</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5222-4047</orcidid><orcidid>https://orcid.org/0000-0003-0750-436X</orcidid><orcidid>https://orcid.org/0000-0002-2095-7075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2653-2664 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2018_2867252 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Contours Data models Dimensionality reduction Estimation Independent variables Input variables Kernel Mathematical models Mutual information nonlinear identification Nonlinear systems Nonparametric statistics nonparametric systems Regression analysis Shape variable selection |
title | Consistent Variable Selection for a Nonparametric Nonlinear System by Inverse and Contour Regressions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistent%20Variable%20Selection%20for%20a%20Nonparametric%20Nonlinear%20System%20by%20Inverse%20and%20Contour%20Regressions&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Cheng,%20Changming&rft.date=2019-07-01&rft.volume=64&rft.issue=7&rft.spage=2653&rft.epage=2664&rft.pages=2653-2664&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2867252&rft_dat=%3Cproquest_cross%3E2248678240%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-a85308794404d4fe311f78c025fbf283dd7c9bc1c8de5c5e15512a83e68c3cce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2248678240&rft_id=info:pmid/&rft_ieee_id=8447298&rfr_iscdi=true |