Loading…
Enhanced P-Type Control: Indirect Adaptive Learning From Set-Point Updates
In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measu...
Saved in:
Published in: | IEEE transactions on automatic control 2023-03, Vol.68 (3), p.1600-1613 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measurements in real time. An iAILC method is first designed for linear systems to improve control performance by fully utilizing model information if such a linear model is known exactly. Then, an iterative dynamic linearization (IDL)-based iAILC is proposed for a nonlinear nonaffine system, whose model is completely unknown. The IDL technique is employed to deal with the strong nonlinearity and nonaffine structure of the systems such that a linear data model can be attained consequently for the algorithm design and performance analysis. The convergence of the developed iAILC schemes is proved rigorously, where contraction mapping, two-dimensional (2-D) Roesser's system theory, and mathematical induction are employed as the basic analysis tools. Simulation studies are provided to verify the developed theoretical results. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3154347 |