Loading…
Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association
Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2007-07, Vol.43 (3), p.1180-1188 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13 |
container_end_page | 1188 |
container_issue | 3 |
container_start_page | 1180 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 43 |
creator | Chung, Yi-Nung Chou, Pao-Hua Yang, Maw-Rong |
description | Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems. |
doi_str_mv | 10.1109/TAES.2007.4383609 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2007_4383609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4383609</ieee_id><sourcerecordid>34404804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1EJZbCD0BcIg5wyjL-iifHZSktUj8OLBI3y3UmxW12HWyHin_frLZw4ACnV6N53pFGD2OvOCw5h_b9ZnXyZSkAzFJJlA20T9iCa23qtgH5lC0AONat0PwZe57z7TwqVHLBvl1MQwnjQPXGpRsq1SY5fxd2N9V9KN-rddyOVEIJP6k6i2MfaOiqS5qSG-Yo9zHdVR9cpq766IqrVjlHH1wJcfeCHfVuyPTyMY_Z108nm_VZfX51-nm9Oq-9RFNq7rhoWyFcL6To_HXjPUp0RnhJEhpELjp5bYzoTOe85oZ7r2TvWqk1GOLymL073B1T_DFRLnYbsqdhcDuKU7YtyEYgSP1fEhEaA4g4k2__SUqlQCGoGXzzF3gbp7Sb_7XYKC0QNcwQP0A-xZwT9XZMYevSL8vB7uXZvTy7l2cf5c2d14dOIKI__O_tA4MolC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864528850</pqid></control><display><type>article</type><title>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chung, Yi-Nung ; Chou, Pao-Hua ; Yang, Maw-Rong</creator><creatorcontrib>Chung, Yi-Nung ; Chou, Pao-Hua ; Yang, Maw-Rong</creatorcontrib><description>Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2007.4383609</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft components ; Computer simulation ; Cost function ; Electronic systems ; Hopfield neural networks ; Learning ; Neural networks ; Neurons ; Partitioning algorithms ; Radar measurement ; Radar measurements ; Radar tracking ; Surveillance ; Target tracking ; Tracking</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2007-07, Vol.43 (3), p.1180-1188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</citedby><cites>FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4383609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chung, Yi-Nung</creatorcontrib><creatorcontrib>Chou, Pao-Hua</creatorcontrib><creatorcontrib>Yang, Maw-Rong</creatorcontrib><title>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems.</description><subject>Aircraft components</subject><subject>Computer simulation</subject><subject>Cost function</subject><subject>Electronic systems</subject><subject>Hopfield neural networks</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Partitioning algorithms</subject><subject>Radar measurement</subject><subject>Radar measurements</subject><subject>Radar tracking</subject><subject>Surveillance</subject><subject>Target tracking</subject><subject>Tracking</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1EJZbCD0BcIg5wyjL-iifHZSktUj8OLBI3y3UmxW12HWyHin_frLZw4ACnV6N53pFGD2OvOCw5h_b9ZnXyZSkAzFJJlA20T9iCa23qtgH5lC0AONat0PwZe57z7TwqVHLBvl1MQwnjQPXGpRsq1SY5fxd2N9V9KN-rddyOVEIJP6k6i2MfaOiqS5qSG-Yo9zHdVR9cpq766IqrVjlHH1wJcfeCHfVuyPTyMY_Z108nm_VZfX51-nm9Oq-9RFNq7rhoWyFcL6To_HXjPUp0RnhJEhpELjp5bYzoTOe85oZ7r2TvWqk1GOLymL073B1T_DFRLnYbsqdhcDuKU7YtyEYgSP1fEhEaA4g4k2__SUqlQCGoGXzzF3gbp7Sb_7XYKC0QNcwQP0A-xZwT9XZMYevSL8vB7uXZvTy7l2cf5c2d14dOIKI__O_tA4MolC4</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Chung, Yi-Nung</creator><creator>Chou, Pao-Hua</creator><creator>Yang, Maw-Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20070701</creationdate><title>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</title><author>Chung, Yi-Nung ; Chou, Pao-Hua ; Yang, Maw-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aircraft components</topic><topic>Computer simulation</topic><topic>Cost function</topic><topic>Electronic systems</topic><topic>Hopfield neural networks</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Partitioning algorithms</topic><topic>Radar measurement</topic><topic>Radar measurements</topic><topic>Radar tracking</topic><topic>Surveillance</topic><topic>Target tracking</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Yi-Nung</creatorcontrib><creatorcontrib>Chou, Pao-Hua</creatorcontrib><creatorcontrib>Yang, Maw-Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Yi-Nung</au><au>Chou, Pao-Hua</au><au>Yang, Maw-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>43</volume><issue>3</issue><spage>1180</spage><epage>1188</epage><pages>1180-1188</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2007.4383609</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2007-07, Vol.43 (3), p.1180-1188 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2007_4383609 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aircraft components Computer simulation Cost function Electronic systems Hopfield neural networks Learning Neural networks Neurons Partitioning algorithms Radar measurement Radar measurements Radar tracking Surveillance Target tracking Tracking |
title | Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Target%20Tracking%20with%20Competitive%20Hopfield%20Neural%20Network%20Based%20Data%20Association&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Chung,%20Yi-Nung&rft.date=2007-07-01&rft.volume=43&rft.issue=3&rft.spage=1180&rft.epage=1188&rft.pages=1180-1188&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2007.4383609&rft_dat=%3Cproquest_cross%3E34404804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864528850&rft_id=info:pmid/&rft_ieee_id=4383609&rfr_iscdi=true |