Loading…

Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association

Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2007-07, Vol.43 (3), p.1180-1188
Main Authors: Chung, Yi-Nung, Chou, Pao-Hua, Yang, Maw-Rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13
cites cdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13
container_end_page 1188
container_issue 3
container_start_page 1180
container_title IEEE transactions on aerospace and electronic systems
container_volume 43
creator Chung, Yi-Nung
Chou, Pao-Hua
Yang, Maw-Rong
description Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems.
doi_str_mv 10.1109/TAES.2007.4383609
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2007_4383609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4383609</ieee_id><sourcerecordid>34404804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1EJZbCD0BcIg5wyjL-iifHZSktUj8OLBI3y3UmxW12HWyHin_frLZw4ACnV6N53pFGD2OvOCw5h_b9ZnXyZSkAzFJJlA20T9iCa23qtgH5lC0AONat0PwZe57z7TwqVHLBvl1MQwnjQPXGpRsq1SY5fxd2N9V9KN-rddyOVEIJP6k6i2MfaOiqS5qSG-Yo9zHdVR9cpq766IqrVjlHH1wJcfeCHfVuyPTyMY_Z108nm_VZfX51-nm9Oq-9RFNq7rhoWyFcL6To_HXjPUp0RnhJEhpELjp5bYzoTOe85oZ7r2TvWqk1GOLymL073B1T_DFRLnYbsqdhcDuKU7YtyEYgSP1fEhEaA4g4k2__SUqlQCGoGXzzF3gbp7Sb_7XYKC0QNcwQP0A-xZwT9XZMYevSL8vB7uXZvTy7l2cf5c2d14dOIKI__O_tA4MolC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864528850</pqid></control><display><type>article</type><title>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chung, Yi-Nung ; Chou, Pao-Hua ; Yang, Maw-Rong</creator><creatorcontrib>Chung, Yi-Nung ; Chou, Pao-Hua ; Yang, Maw-Rong</creatorcontrib><description>Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2007.4383609</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft components ; Computer simulation ; Cost function ; Electronic systems ; Hopfield neural networks ; Learning ; Neural networks ; Neurons ; Partitioning algorithms ; Radar measurement ; Radar measurements ; Radar tracking ; Surveillance ; Target tracking ; Tracking</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2007-07, Vol.43 (3), p.1180-1188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</citedby><cites>FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4383609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chung, Yi-Nung</creatorcontrib><creatorcontrib>Chou, Pao-Hua</creatorcontrib><creatorcontrib>Yang, Maw-Rong</creatorcontrib><title>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems.</description><subject>Aircraft components</subject><subject>Computer simulation</subject><subject>Cost function</subject><subject>Electronic systems</subject><subject>Hopfield neural networks</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Partitioning algorithms</subject><subject>Radar measurement</subject><subject>Radar measurements</subject><subject>Radar tracking</subject><subject>Surveillance</subject><subject>Target tracking</subject><subject>Tracking</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1EJZbCD0BcIg5wyjL-iifHZSktUj8OLBI3y3UmxW12HWyHin_frLZw4ACnV6N53pFGD2OvOCw5h_b9ZnXyZSkAzFJJlA20T9iCa23qtgH5lC0AONat0PwZe57z7TwqVHLBvl1MQwnjQPXGpRsq1SY5fxd2N9V9KN-rddyOVEIJP6k6i2MfaOiqS5qSG-Yo9zHdVR9cpq766IqrVjlHH1wJcfeCHfVuyPTyMY_Z108nm_VZfX51-nm9Oq-9RFNq7rhoWyFcL6To_HXjPUp0RnhJEhpELjp5bYzoTOe85oZ7r2TvWqk1GOLymL073B1T_DFRLnYbsqdhcDuKU7YtyEYgSP1fEhEaA4g4k2__SUqlQCGoGXzzF3gbp7Sb_7XYKC0QNcwQP0A-xZwT9XZMYevSL8vB7uXZvTy7l2cf5c2d14dOIKI__O_tA4MolC4</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Chung, Yi-Nung</creator><creator>Chou, Pao-Hua</creator><creator>Yang, Maw-Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20070701</creationdate><title>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</title><author>Chung, Yi-Nung ; Chou, Pao-Hua ; Yang, Maw-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aircraft components</topic><topic>Computer simulation</topic><topic>Cost function</topic><topic>Electronic systems</topic><topic>Hopfield neural networks</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Partitioning algorithms</topic><topic>Radar measurement</topic><topic>Radar measurements</topic><topic>Radar tracking</topic><topic>Surveillance</topic><topic>Target tracking</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Yi-Nung</creatorcontrib><creatorcontrib>Chou, Pao-Hua</creatorcontrib><creatorcontrib>Yang, Maw-Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Yi-Nung</au><au>Chou, Pao-Hua</au><au>Yang, Maw-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>43</volume><issue>3</issue><spage>1180</spage><epage>1188</epage><pages>1180-1188</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Data association which obtains relationship between radar measurements and existing tracks plays one important role in radar multiple-target tracking (MTT) systems. A new approach to data association based on the competitive Hopfield neural network (CHNN) is investigated, where the matching between radar measurements and existing target tracks is used as a criterion to achieve a global consideration. Embedded within the CHNN is a competitive learning algorithm that resolves the dilemma of occasional irrational solutions in traditional Hopfield neural networks. Additionally, it is also shown that our proposed CHNN-based network is guaranteed to converge to a stable state in performing data association and the CHNN-based data association combined with an MTT system demonstrates target tracking capability. Computer simulation results indicate that this approach successfully solves the data association problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2007.4383609</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2007-07, Vol.43 (3), p.1180-1188
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2007_4383609
source IEEE Electronic Library (IEL) Journals
subjects Aircraft components
Computer simulation
Cost function
Electronic systems
Hopfield neural networks
Learning
Neural networks
Neurons
Partitioning algorithms
Radar measurement
Radar measurements
Radar tracking
Surveillance
Target tracking
Tracking
title Multiple-Target Tracking with Competitive Hopfield Neural Network Based Data Association
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-Target%20Tracking%20with%20Competitive%20Hopfield%20Neural%20Network%20Based%20Data%20Association&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Chung,%20Yi-Nung&rft.date=2007-07-01&rft.volume=43&rft.issue=3&rft.spage=1180&rft.epage=1188&rft.pages=1180-1188&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2007.4383609&rft_dat=%3Cproquest_cross%3E34404804%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-1a129922af232dcb6cc838a72c3e3068812d3b772d7dac5171cc43fa935507e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864528850&rft_id=info:pmid/&rft_ieee_id=4383609&rfr_iscdi=true